
TRANSPORT PROBLEMS                                                                                2023 Volume 18 Issue 2 
PROBLEMY TRANSPORTU                                                                  DOI:10.20858/tp.2023.18.2.18 

 
 

Keywords: vehicle dynamics model; dynamic optimization; lane change and overtaking maneuvers 
 

Michał BRZOZOWSKI1, Łukasz DRĄG2* 
 
 

APPLICATION OF DYNAMIC OPTIMIZATION FOR AUTONOMOUS 
VEHICLE MOTION CONTROL 

 
Summary. This article presents a procedure algorithm and vehicle dynamics models that 

can be applied to planning and controlling the motion of an autonomous car. The simulation 
results obtained using a simplified bicycle model with three degrees of freedom and a 
spatial model with 10 degrees of freedom were compared. The numerical efficiency of both 
models was evaluated. The task of dynamic optimization was formulated, the solution to 
which enables the implementation of lane change and overtaking maneuvers. The task was 
solved using the bicycle model, and the results (implementation of the intended maneuver) 
were validated using the spatial model. 

 
 

1. INTRODUCTION 
 

Autonomous vehicle-related technologies have been rapidly developing in recent years. This is a 
leading topic widely studied in many research and academic centers engaged in vehicle and transport 
research. Although no fully autonomous commercial vehicle has yet appeared, autonomous driving 
systems and other technologies derived from autonomous vehicle designs and prototypes are widely 
used in many vehicles currently on the market - for example, in the form of lane-keeping assistance or 
active cruise control.  

Autonomous vehicles aggregate inventions and technologies from different fields of science, 
combining them into a common complementary system that must be precise and reliable yet effective 
in their operation so that the autonomous vehicle can respond in real time to changing road conditions. 
Similarly, the autonomous vehicle motion model differs from the classic vehicle motion model. It must 
be numerically efficient, reliable, as accurate (precise) as possible, and easy to implement. The 
autonomous vehicle motion model should be able to predict (plan) vehicle motion based on signals 
received from measuring devices while maintaining performance and speed. Finding a compromise 
between these requirements is not easy.  

Issues related to the modeling of vehicle kinematics and dynamics have a very extensive literature. 
Many technical universities and research centers related to automotive technology are engaged in this 
endeavor [9]. In general, two main trends in modeling can be distinguished. Researchers of the first 
trend try to develop models that, as much as possible, reflect a vehicle’s features and properties. It 
produces models with many degrees of freedom, nonlinear, requiring high computing power in motion 
(dynamics) simulations [1, 11]. If professional vehicle dynamics simulation packages such as MSC, 
ADAMS, and DADS are used for testing, the cost of such tests increases significantly. 

The other trend includes models as simplified as possible with low computing power requirements 
but which reflect the main characteristics of moving vehicles. Their main advantage is their numerical 
efficiency, with which they can be used for the real-time control of vehicles or in dynamic optimization. 
Examples of such models can be found, inter alia, in the literature [8, 10]. The first was used to simulate 
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the motion and collisions of multi-member vehicles, while the second model was used to analyze the 
effect of the castor offset on the braking stability of a vehicle with ABS (Anti-lock Braking System) a 
surface of the μ- split type. 

This paper presents two models of passenger vehicles. The first is the spatial model (SM), formulated 
using modeling methods adopted in robotics and having 10 degrees of freedom [3. 4]. In this model, 
three translational coordinates (body center of mass positions) and the rotational coordinates (ZYX Euler 
angles) were used to describe the position of the vehicle as a rigid body. The other four degrees of 
freedom of the system are due to the wheel steering angle of the vehicle. Homogeneous transformations 
were used to describe the geometry and coordinate transformations. 

The other model is a flat bicycle model (BM) with three degrees of freedom only. It is widely used 
for autonomous vehicle control [2, 5, 6, 12]. 

As part of this study, the vehicle dynamics models were validated, their numerical efficiency was 
evaluated, and then the task of dynamic optimization was formulated. Its solution, consisting of the 
determination of the steering angle of the vehicle’s front wheels, ensures the implementation of the 
intended maneuver (lane change or overtaking). The final part of this paper presents the options for 
applying optimization methods to autonomous vehicle motion control using the models presented in this 
paper. 

 
 

2. SPATIAL INTRODUCTION 
 

The method of homogeneous transformations was used to formulate this model, patterned after the 
spatial models from the literature [4]. The motion of a vehicle body, as shown in Fig. 1 (i.e., the body 
with suspensions), is described by the following components of the vector: 

						𝐪! = $
𝐫"
𝛟', (1) 

where: 𝐫" = )
𝑥"
𝑦"
𝑧"
- – vector specifying the position of the vehicle’s center of mass, 

𝛟 = )
𝜓
𝜃
𝜑
- – vector specifying the orientation of the axis of the coordinate system associated with 

the vehicle {}′ relative to the axis of the inertial system {}, 
𝜓, 𝜃, 𝜑		 – Euler’s ZYX angles. 

 
Fig. 1. Position of a vehicle in an inertial system {} - Spatial Model (SM). Generalized coordinates of the vehicle 

body 
 

Coordinates are transformed from system {}′ to system {} according to dependence: 
𝐫	 = 	𝐁	𝐫′! , (2) 
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where: 𝐫	 = 	 5

𝑥
𝑦
𝑧
1
7 – vector of coordinates of a point in the system {}, 

𝐫′! 	= 	 8

𝑥′
𝑦′
𝑧′
1

9 – vector of coordinates of a point in the system {}′, 

𝐁	 = 	𝐁(𝐪#) 	= 	 <
𝐑 𝐫"
𝟎 1 ? – transformation matrix, 

𝐑	 = 	 )
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

-	)
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
-	)
1 0 0
0 cos𝜑 −sin𝜑
0 sin𝜑 cos𝜑

-. 

 
It was assumed that the suspension susceptibility can be reduced to the vehicle’s tires. Therefore, the 

movement of the wheels relative to the body is described by 𝜑$ (the angle of wheel rotation) and 𝛿$ (the 
angle of wheel steering), 𝑖	 = 	1, 2, 3, 4 (Fig. 2). 
 

 
Fig. 2. Angles: 𝜑! - angle of wheel rotation and 𝛿! - angle of the 𝑖"# wheel steering 
 

Coordinates with the wheel system 𝑖	{𝑤$}′ to the system {}′ associated with the vehicle 𝑏, were 
transformed according to the dependence:  

𝐫%& = 𝐃$𝐖$𝐫′',$ (3) 

where: 𝐃$ 	= 	 P
𝛀$ 𝒓′!,$
𝟎 1

S,      𝛀$ =	 )
cos 𝛿$ −sin 𝛿$ 0
sin 𝛿$ cos 𝛿$ 0
0 0 1

-, 

𝐖$ 	= 	 <
𝚲$ 0
𝟎 1?,          𝚲$ = )

cos𝜑$ 0 sin𝜑$
0 1 0

− sin𝜑$ 0 cos𝜑$
-. 

Moreover, coordinates were transformed from the wheel system {𝑤$}′ to the inertial system {} by 
dependency: 

𝐫	 = 	𝐁	𝐃$𝐖$ 	𝐫′',$ . (4) 
It was assumed in this study that the angles of 𝛿$ are known functions of time: 

V𝛿) = 𝛿* = 𝛿(𝑡)	
𝛿+ = 𝛿, = 0							 

- front wheel steering angle 
- rear wheel steering angle. 

Thus, the number of degrees of freedom of the vehicle with wheels was reduced to 10: 
𝐪	 = 	 P

𝐪!
𝐪-S, 

(5) 

where: 𝐪!	is	defined	in	(1), 
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𝐪- = [

𝜑)
𝜑*
𝜑+
𝜑,

\, 
(6) 

where: 𝜑$ – wheel rotation angle 𝑖. 
The interaction between the wheels and the roadway was described according to the Dugoff-

Uffelman model [4]. The vehicle motion equations were written in the form  
𝐌(𝐪)𝐪̈ = 𝒇`𝐪, 𝐪̇, 𝛿(𝑡)b (7) 

and were integrated by the Runge-Kutta method of the fourth order with a constant integration step. 
Initial conditions for dynamics were determined by solving a system of nonlinear algebraic equations 
describing the static equilibrium of the vehicle.  
 
 
3. SIMPLIFIED MODEL (BICYCLE MODEL) 
 

The BM is a flat model with three degrees of freedom (3 DoF) and is shown in Fig. 3.  
 

 
Fig. 3. Vehicle diagram - simplified model (BM) 
 

Vehicle motion equations in the 𝑥, 𝑦 coordinate system can be written as follows: 
𝑚	𝑥̈" =	𝐹.&,/ cos𝜓	 −	𝐹0&,/ sin𝜓 + 𝐹.&,/ cos(𝛿 + 𝜓) −𝐹0&,1 sin(𝛿 + 𝜓) − 𝐹'& cos𝜓, (8) 
𝑚	𝑦̈" = 𝐹.&,/ sin𝜓 + 𝐹0&,/ cos𝜓 + 𝐹.&,1 sin(𝛿 + 𝜓) + 𝐹0&,1 cos(𝛿 + 𝜓) − 𝐹'& sin𝜓, (9) 

𝐼2𝜓̈ = −𝐹0!,/𝑙/ + 𝐹.!,1𝑙1 sin 𝛿 + 𝐹0!,1𝑙1 cos 𝛿 +𝑀2&,/ +𝑀2&1 , (10) 
where:  𝑚 - total mass of the vehicle (with wheels), 

𝐼2&	- mass moment of inertia of the vehicle relative to the axle 𝑧′ perpendicular to the plane 
𝑥, 𝑦 and placed in the center of mass 𝐶, 

𝑥" , 	𝑦"- vehicle mass center coordinates, 
𝛿 – steering angle of the front wheels, 
𝜓 - angle of inclination of the vehicle’s longitudinal axis the  𝑥 inertial system {} axis, 
𝐹.&,/ , 	𝐹0&,/ - component forces in the plane 𝑥′, 𝑦′ acting on the rear wheels of the vehicle, 
𝐹.&,1 , 	𝐹0&,1 - component forces in the plane 𝑥′, 𝑦′ acting on the front wheels of the vehicle, 
𝑙/ , 	𝑙1	- distance of the vehicle’s rear and front axles from its mass center, 
𝐹'& - air resistance force, 
𝑀2&,/ , 𝑀2&,1 - stabilizing moments. 

Three ways to determine the forces of roadway impacts on vehicles were considered. Table 1 
summarizes the means of determining forces and moments, assuming that the vehicle is moving at 𝑉345, 
which is the longitudinal velocity of the vehicle, adopted as a known function of time. Slip angles 𝛼/ 	𝑖	𝛼1 
were determined from dependency: 
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𝛼/ =
6"!,$
6%!,$

, (11) 

𝑉.&," , 𝑉0&," 	 are the components of the velocity of the mass center in the system {}′; they can be calculated 
as follows: 

𝛼1 = −𝛿 +
6"!,&
6%!,&

. (12) 

𝑉.," 	= 	 𝑥̇", 𝑉0," 	= 	 𝑦̇" are components of the velocity of the vehicle’s mass center in the inertial system 
{}. 

Table 1 
Methods for determining the forces of road impact on vehicle 

 

Value Variant 1 
(V1) 

Variant 2 
(V2) 

Variant 3 
(V3) 

Longitudinal 
force 

𝑓.&,/ = 𝑓.&1 =
)
*
𝐹' + 𝑘(𝑉345 − 𝑉.&,"), k - constant 

Lateral 
force 

𝑓0&,/ = −𝛼/ 	 ∗ 	𝐹2,/  
𝑓0&,1 = −𝛼1 	 ∗ 	𝐹2,1 

𝑓0&,/ = −2𝐶/ tan 𝛼/ 
𝑓0&,1 = −2𝐶1 tan 𝛼1 

𝑓0&,/ = −𝑘/𝛼/𝐹2,/ 
𝑓0&,1 = −𝑘1𝛼1𝐹2,1	
𝑘/ , 	𝑘1	- constants 

Stabilizing 
moments 𝑀2&,/ = 𝑀2&,1 = 0 

𝑀2&,7 = −𝑓0!,7 ∗ 𝑎)	
														−𝑓.!,7 	 ∗ 𝑎* tan 𝛼7 
where: 𝑝 ∈ {𝑟, 𝑓}, 𝑎), 𝑎*- constants 

 
Method 3 was introduced so that the stabilizing forces and moments were determined in the same 

way as in the Dugoff-Uffelman model used in the spatial model. 𝐹2,/ , 𝐹2,1 are forces normal to the plane 
𝑥, 𝑦, determined from the following formulas: 

𝐹2,/ 	= 	
𝑚𝑔̅𝑙𝑓
𝑙𝑟 + 𝑙𝑓

	, 
(13) 

𝐹2,1 =	
𝑚𝑔̅𝑙𝑟
𝑙𝑟 + 𝑙𝑓

	, (14) 

where:  𝑔̅ = 𝑔 cos 𝛼, 
𝑔	-		acceleration of gravity, 
𝛼	-	angle of the road to the x-axis. 

 
The correctness of this vehicle model was evaluated. First of all, the simulation results obtained in 

our own program were compared with the experimental results. Then, the task of dynamic optimization 
for two vehicle motion maneuvers (lane change, overtaking) was formulated. The results obtained in the 
optimization process were applied to the vehicle control in the full model. The obtained runs of selected 
parameters characterizing the vehicle motion were compared. 
 
 
4. MODEL VALIDATION 
 

As part of this study, the proposed model with three degrees of freedom was validated. It consisted 
in comparing the results of the modeling of the passenger vehicle motion’s dynamics with the 
experimental results reported in the literature [5]. In this study, selected vehicle motion parameters were 
recorded on a curved track with variable speed. In order to correctly map the vehicle motion trajectory, 
in the simulation calculation, the longitudinal speed of the vehicle 𝑉.!," was considered in the direction 
of the front wheel steering angles 𝛿 registered in the investigation (Figs. 4a and b). The speed of the 
vehicle during the experiment did not exceed 25 km/h. The parameters adopted in the simulation model 
are shown in Table 2. 
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Fig. 5 shows a comparison of the vehicle motion trajectory in the plane 𝑥𝑦 for data from the 
simulation model and experiment (E) (black dashed line). The implications of many ways of determining 
the forces of roadway impact on the vehicle were studied. Similar and acceptable compliance of vehicle 
motion trajectory mapping was obtained for methods V2 and V3. The maximum and minimum vehicle 
displacements in both cases did not differ by more than 2 m from those recorded in the experiment. In 
contrast, insufficient modeling accuracy was obtained for method V1. The vehicle displacements in the 
direction of the 𝑥 and 𝑦 axes with the inclusion in the model of all the considered ways of modeling the 
forces of roadway impact on wheels are presented in Fig. 6. In the absence of vehicle data, no results 
are reported for the SM (10 DoF). 

                                                                                                                                           Table 2 
Passenger car details adopted for validation 

 
Parameter Symbol Value Unit 
Distance of the front wheel axle from the center of gravity 𝑙1 1.25 m 
Distance of the rear wheel axle from the center of gravity 𝑙/ 1.32 m 
Mass moment of inertia of the vehicle 𝐼2& 3411.52 kg∙m2 
Vehicle mass 𝑚 2160 kg 

 
a) b) 

  
Fig. 4. (a) Front wheel steering angle 𝛿 and (b) the longitudinal velocity of the passenger car 𝑉$!,& according to the 

literature [5] 
 

 
Fig. 5. Vehicle motion trajectory for all considered roadway-to-wheel impact modeling options 
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A motion simulation of a vehicle with the parameters shown in Table 3 was performed in order to 
evaluate the performance of the two models presented above. 

Trajectories of the motion of a vehicle driving at 10, 14, and 18 m/s and of the front wheel steering 
angle forces were compared (Fig. 7). 

a) b) 

  
Fig. 6. Vehicle displacement in the direction of the (a) 𝑥-axis and (b) 𝑦-axis 

Table 3 
Passenger car details 

 
Parameter Symbol Value Unit 
Distance of the front wheel axle from the center of gravity 𝑙1 1.2 m 
Distance of the rear wheel axle from the center of gravity 𝑙/ 1.2 m 
Distance between front and rear wheels 𝑏1 , 𝑏/ 1.2 m 
Mass moment of inertia of the vehicle acting relative to the 𝑧′-axis 𝐼2& 300 kg∙m2 
Mass moment of inertia of the vehicle acting relative to the 𝑥′-axis 𝐼.& 100 kg∙m2 
Mass moment of inertia of the vehicle acting relative to the 𝑦′-axis 𝐼0& 250 kg∙m2 
Vehicle mass 𝑚 600 kg 
Wheel radius 𝑟' 0.3 m 
Mass moment of inertia of a wheel 𝐼' 0.54 kg∙m2 
Wheel mass 𝑚' 20 kg 

 

 
Fig. 7. Adopted front wheels steering angle 𝛿 
 

The trajectories obtained for the SM and BM (BM with the V3 variant) are shown in Fig. 8. 
Table 4 compares simulation calculation times 𝑡"̅ for both models in the range of 𝑡	 ∈ 	 〈0; 45〉	s for 

a constant integer step ℎ = 0.01 s. The calculations were performed on a personal computer with an 
Intel Xenon Gold 5220 CPU 2.2 GHz and 64 GB of RAM. This time is two orders of magnitude smaller 
in the BM than in the SM. This suggests that the simplified model should be used to solve the dynamic 
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optimization problem when the vehicle motion equations must be repeatedly integrated over the entire 
simulation time to find the optimal value. 

The vehicle motion trajectories in the initial phase (forward, first turn) are similar in all cases 
analyzed. However, with an increase in vehicle speed, differences in displacement between models 
begin to be noticeable. In the final motion phase, when the vehicle displacement in the direction of the 
𝑥-axis is close to 0 m, if the vehicle travels at 10 m/s, the difference of displacements in the direction of 
the y-axis between the two models with respect to the width of the trajectory 𝑤0 per the BM is only 
0.17%. However, at a speed of 18 m/s, this difference increases to 1.28%. 
 

a)  

 

b)  

 

c)  

 
 d) 

 
Fig. 8. Vehicle motion trajectory according to the BM and SM for different vehicle speeds 𝑣: a) zoom for 

𝑣=10 m/s, b) zoom for 𝑣 = 14 m/s, c) zoom for 𝑣 = 18 m/s, d) all considered vehicle speeds 
 

Table 4 
Simulation calculation times and vehicle motion trajectory parameters 

 
Nominal 
velocity  

of vehicle 
 𝑣345 [m/s] 

Width of vehicle trajectory (BM) Horizontal position of the 
vehicle 𝑦 [m] when 

 	𝑥 = 0	m and 𝑡 > 40	𝑠 

Calculation 
time 
𝑡"̅ [s] in the 𝑥-axis direction 

𝑤. [m] 

in the 𝑦-axis 
direction 
𝑤0 [m] BM SM BM SM 

10 139.838 119.838 0 0.204 
0.03 2.73 14 195.850 167.866 0.022 1.168 

18 251.853 215.86 0.015 2.771 
 
The validated vehicle motion model (BM) was then applied to solve the dynamic optimization task. 

This entailed finding the appropriate front wheel steering angles at selected points in time, ensuring the 
implementation of lane change and overtaking maneuvers. The results of numerical simulations 
presented further in this paper were obtained using the third roadway impact modeling option (V3). 
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5. DYNAMIC OPTIMIZATION 
 

When developing a reliable autonomous vehicle control algorithm, a number of factors are taken into 
consideration. The number of such factors should be as small as possible and ensure that an acceptable 
solution is found in the shortest possible time. The procedure presented in this part of the study used the 
simplified vehicle model presented earlier, which made it possible to accurately map the lane change 
maneuver (task T1) and the overtaking maneuver (task T2) in close to real time. The correct 
implementation of both maneuvers required the formulation of two separate dynamic optimization tasks. 
In both cases, the front wheel steering angles 𝛿 were selected for a specific time t. It was assumed that 
the front wheel steering angles for both maneuvers in the BM were as shown in Fig. 9. 
 

a) 

 
 
b) 

 
 
Fig. 9. Front wheel steering angles 𝛿 for the a) lane change maneuver - task T1 and b) overtaking maneuver – task 

T2 
 
In Task T1, four front wheel steering angles are observed for 𝛿$ at points 𝑡) ÷ 𝑡,. Between 𝑡$8)	𝑎		𝑡$, 

the angle 𝛿 changes linearly from 𝛿$8) to 𝛿$. 𝛿(𝑡9) = 𝛿(𝑡:) = 𝛿(𝑡; = 𝑇) = 0 was then assumed.  
In contrast, task T2 looked for eight values 𝛿(𝑡$) for 𝑖 = 1, 2, 3, 4 and 𝛿(𝑡$<*) for 𝑖 = 5, 6, 7, 8, assuming 
𝛿(𝑡9) = 𝛿(𝑡:) = 𝛿(𝑡;) = 𝛿(𝑡))) = 𝛿(𝑡)* = 𝑇) = 0. 

After a preliminary analysis of the simulation results, the number of decision variables 𝑛 may be 
reduced. Therefore, 

 
in Task T1: 
𝑛 = 1;  when it is assumed 𝛿(𝑡)) = 𝛿(𝑡*) = 𝑋), 𝛿(𝑡+) = 𝛿(𝑡,) = −𝑋), 
𝑛 = 2;   𝛿(𝑡)) = 𝛿(𝑡*) = 𝑋), 𝛿(𝑡+) = 𝛿(𝑡,) = 𝑋*, 
𝑛 = 4;  𝛿(𝑡)) = 𝑋), 𝛿(𝑡*) = 𝑋*, 𝛿(𝑡+) = 𝑋+, 𝛿(𝑡,) = 𝑋,, 
 
in Task T2: 
𝑛 = 1; 𝛿(𝑡)) = 𝛿(𝑡*) = 𝑋), 𝛿(𝑡+) = 𝛿(𝑡,) = −𝑋), 
              𝛿(𝑡=) = 𝛿(𝑡>) = −𝑋), 	𝛿(𝑡?) = 𝛿(𝑡)9) = 𝑋), 
𝑛 = 2;   𝛿(𝑡)) = 𝛿(𝑡*) = 𝑋), 	𝛿(𝑡+) = 𝛿(𝑡,) = 𝑋*, 
              𝛿(𝑡=) = 𝛿(𝑡>) = 𝑋, 	𝛿(𝑡?) = 𝛿(𝑡)9) = 𝑋), 
𝑛 = 4;   𝛿(𝑡)) = 𝑋), 	𝛿(𝑡*) = 𝑋*, 	𝛿(𝑡+) = 𝑋+, 	𝛿, = 𝑋,, 
              𝛿(𝑡=) = 𝑋,, 	𝛿(𝑡>) = 𝑋+, 	𝛿(𝑡?) = 𝑋*, 𝛿(𝑡)9) = 𝑋). 
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The task of dynamic optimization is to search for such a function value that the minimum is achieved 
by the following function: 

𝛿 = 𝛿(𝑋), 𝑋*, … , 𝑋3) (15) 
Task T1 - lane change: 

Ω = Ω(𝑋), 𝑋*, … , 𝑋3) = 5
1

(𝑇 − 𝑡:)
�(𝑦 − 𝑑)*
@

A'

𝑑𝑡7

)
*

+ 5
1

(𝑇 − 𝑡:)
�𝜓*
@

A'

𝑑𝑡7

)
*

, 

(16) 

 
Task T2 – overtaking: 

Ω = Ω(𝑋), 𝑋*, … , 𝑋3) = 5
1

(𝑡; − 𝑡:)
�(𝑦 − 𝑑)*
A(

A'

𝑑𝑡7

)
*

+ 5
1

(𝑡; − 𝑡:)
� 𝜓*
A'

A(

𝑑𝑡7

)
*

	

																																														+ 5
1

(𝑇 − 𝑡)*)
� 𝑦*
@

A)*

𝑑𝑡7

)
*

+ 5
1

(𝑇 − 𝑡)*)
�𝜓*
@

A)*

𝑑𝑡7

)
*

. 

(17) 

where:  𝑦 – displacement of the vehicle’s mass center in the direction of the 𝑦-axis of the inertial  
                   system  {}, 

𝜓 - angle of inclination of the vehicle’s longitudinal axis to the 𝑥 inertial system {} axis 
𝑑 – distance between the adjacent lane axes, 
𝑋$ - decision variables. 

subject to the following constraints: 
𝑋$5$3 ≤ 𝑋$ ≤ 𝑋$5B. 𝑖 = 1,… , 𝑛 (18) 

where: 𝑋$5$3, 𝑋$5B. – minimum and maximum permissible front wheel steering angles 𝛿. 
The optimization task was solved for various numbers of decision variables 𝑋$. The optimization 

task was solved for the vehicle parameters listed in Table 3. The Nelder-Mead simplex method was used 
for optimization [7]. At each optimization step, it was necessary to integrate the motion equations in the 
interval 〈0; 𝑇〉 to enable the functional value calculation Ω from (12). 

In the first task (T1), on changing the lane, it was assumed that the maneuver was performed in time 
𝑇 = 20 s, and the front wheel steering function values were searched for at the following times: 𝑡) = 3 s, 
𝑡*  = 4 s, 𝑡+  = 10 s, and 𝑡, = 11 s. The distance between adjacent lanes 𝑑 was adopted at 3.5 m. The 
same distance between the adjacent lane axes was also assumed in Task T2. The total simulation time 
for the overtaking maneuver in Task T2 was extended to 𝑇 = 35 s. Function values 𝛿 were observed at 
eight points on the timeline 𝑡 ∈ [3, 4, 10, 11, 18, 19, 25, 26] s. In both tasks, it was assumed that the 
vehicle during the simulation moves at a constant speed. A solution to the optimization problem for 
various motion speeds was sought. 

The course of function 𝛿 in Task T1 for various vehicle motion speeds obtained after the assumption 
𝑛 = 1 is shown in Fig. 10a. As can be seen, the higher vehicle motion speed forced the choice of smaller 
steering angles. The vehicle mass center’s displacement in the direction of the 𝑦-axis (Fig. 11a), starting 
from 14 s of simulation, is close to the assumed distance 𝑑 = 3.5 m. Also, the angle of inclination of 𝜓 
the vehicle’s longitudinal axis to the x-axis in the final phase of the maneuver was close to zero (Fig. 
11b). This means that after the lane change maneuver, the vehicle can continue straight ahead (along the 
lane axis). 

The optimization results obtained after solving Task T2 are shown in Figs. 10b and 12. The front 
wheel steering angles	𝛿 were selected for various numbers of decision variables 𝑛 and the vehicle speed  
𝑉345 = 20 m/s. The solutions obtained for 𝑛 = 1 and 𝑛 =	2 are almost identical, whereas the solution 
obtained for four decision variables differed slightly from the two previous solutions. The difference is 
due to the fact that at different moments in time (𝑡) and 𝑡*, 𝑡+ and 𝑡,, 𝑡= and 𝑡> and 𝑡? and 𝑡)9) different 
values of 𝛿 could be found. As was the case with the first task, all results obtained in the second task 
were also of acceptable accuracy. In the time interval 𝑡𝜖	〈14; 15〉 s, the vehicle’s lateral displacement 
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was approx. 3.5 m, and the angle 𝜓 was close to 0. At the end of the overtaking maneuver, the 
displacement 𝑦 and the angle 𝜓 were close to zero. 

 
a) 

 

b) 

 
Fig. 10. Curves of front wheel steering angle 𝛿: a) Task T1 and b) Task T2 

a) 

   

b) 

   
Fig. 11. a) Vehicle displacement in the direction of the y-axis and b) the angle of inclination 𝜓	of	the vehicle’s 

longitudinal axis to the x-axis (Task T1) 
 

 
a) 

   

b ) 

    
Fig. 12. a) Vehicle displacement in the direction of the 𝑦-axis and b) inclination	angle 𝜓	of the vehicle’s 

longitudinal axis to the 𝑥-axis - Task T2 
 

The results presented in Table 5 show that the time needed to find a final solution with the applied 
optimization method depends, inter alia, on vehicle speed 𝑉345 and the number of decision variables 𝑛. 
Increasing the number of decision variables from one to four results in four times the number of 
iterations performed and, thus, a four-times longer calculation time. Moreover, a lower vehicle motion 
speed translates into more optimization steps. The calculation times were recorded by integrating the 
motion equations with a constant step ℎ = 0.01 s. 

The correctness of the solutions obtained in optimization was verified. The functions 𝛿 obtained in 
the simplified model (3 DoF) were used as inputs in the full model (10 DoF). The vehicle motion 
dynamics results obtained in both models are compared in Figs. 13 and 14. The courses of lateral 
displacement of the vehicle 𝑦 and the angle of the vehicle body 𝜓 were compared. Additional plots 
showing the differences between the compared values 𝛥𝑦 and 𝛥𝜓 were created to better illustrate the 
differences between the two models. 
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Table 5 
Time required to solve the optimization problem 

 

Maneuver Vehicle speed 
𝑉345 [m/s] 

Number of decision 
variables  𝑛 

Number of 
optimization steps 𝑁 

Time of 
calculation [s] 

Lane change 
(T1) 

10 1 39 0.24 
15 1 29 0.21 
20 1 33 0.19 

Overtaking 
(T2) 

20 1 33 0.33 
20 2 70 0.69 
20 4 136 1.22 

 
Task T1 Task T2 

  

  
Fig. 13. Vehicle displacement in the direction of the 𝑦-axis and the displacement differences between them Δ𝑦 - 

Tasks T1 and T2 
 

The simulation results were obtained assuming that the vehicle was moving at the speed of  𝑉345 = 
10 m/s. The largest difference in lateral displacement ∆y between the two models of more than 0.03 m 
was obtained at the initial phase of the simulation. In the T1 task, the difference ∆𝑦 at the end of the 
simulation was -0.02 m. This means that the vehicle in the BM had a smaller lateral displacement. In 
the case of the overtaking maneuver, the difference ∆𝑦 at time 𝑡 = 20 s was zero. Furthermore, the 
difference 𝛥𝜓 = 0 in both models was obtained at the beginning and end of the simulation. Its largest 
value was recorded at 5 s of the simulation, and it was less than 1% of the angle 𝜓 value.  The maximum 
displacement ∆y and maximum angle 𝛥𝜓 differences did not exceed ±0.04 m and ±0.004 rad, 
respectively. This outcome indicates good agreement between the two compared vehicle dynamics 
models. The smaller number of generalized coordinates in the BM needed to describe the vehicle 
dynamics significantly reduced the calculation time. The calculation time for solving the dynamic 
optimization problem using the simplified 3 DoF model was almost 150 times shorter than for the full 
10 DoF model. 
 
6. CONCLUSIONS 
 

Controlling an autonomous vehicle requires the vehicle’s behavior to be predicted over time, 
considering current external factors. The parameters with fundamental impacts on the vehicle motion 
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trajectory include the vehicle speed and the front wheel steering angles. This paper presented two 
simplified models of the vehicle: a spatial SM with 10 degrees of freedom and a flat model with three 
degrees of freedom. The validation of the models indicates that it is possible to correctly reflect the 
movement of the real vehicle. As a part of the validation of the BM, the course of speed and steering 
angle were assumed as in the experiment [5]. The trajectories of the vehicle obtained in the simulation 
differed slightly from the trajectory in the experiment. The SM was validated indirectly by comparing 
the results of calculations according to this model with the results of the BM. A similar method of 
determining road forces acting on the wheels was used in both models, and the results were virtually the 
same. 

Task T1 Task T2 

  

  
Fig. 14. Inclination angle 𝜓	of the vehicle’s longitudinal axis to the 𝑥-axis and the inclination angle differences 

between them Δ𝜓 - Tasks T1 and T2 
 
The BM was used to determine the courses of the steering angle (function 𝛿(t)) in lane changing and 

overtaking maneuvers. Appropriate optimization tasks were formulated for this purpose, which were 
solved using the downhill simplex method. An important feature of these tasks is the need to integrate 
the equations of vehicle motion in each optimization step (for each combination of decision variables). 
The solution of the dynamic optimization task in the BM for a lane change or overtaking maneuver takes 
less than 0.3 s. The courses of 𝛿(t) obtained as a result of optimization using the BM were applied to the 
SM, and a very good level of compliance was achieved between the courses of parameters describing 
vehicle motion. It is noteworthy that the adoption of steering angle values at discrete moments of time 
as decision variables and the use of linear interpolation between points 𝑡$ enabled a reduction in the 
number of these variables. The developed computer program allowed the use of more complex forms of 
the 𝛿(t) function (e.g., exponential or splain functions). 

When the objective function is formulated, it is insufficient to provide the expected horizontal 
displacement of the vehicle due to lane changing. This makes it necessary to add a limitation factor for 
the deviation of the vehicle’s longitudinal axis angle to the x-axis of the inertial system {} after the 
maneuver is completed. The proposed approach for reducing the number of decision variables 
significantly affects the number of optimization steps required. The simulation results obtained for 
optimization with a single decision variable in the lane change maneuver confirm correct vehicle 
trajectories. 

The authors are hopeful that the presented models will have valuable practical applications because, 
for a finite set of vehicle motion parameters and road infrastructure geometry, it is possible to find a 
generalization of the model using artificial neural networks that provide vehicle control in close to real 
time. Work is also currently underway to increase the numerical efficiency of the SM, which, while 



222                                                                                                                       M. Brzozowski, Ł. Drąg 
 
requiring more vehicle data, makes it possible to simultaneously account for vehicle tilts along the 
longitudinal and transverse axes. Thus, it will be possible to take into account cases of vehicle wheels 
lift-off from a road surface. 
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