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ALGORITHM FOR THE EXTRACTION OF SELECTED RAIL TRACK 
BALLAST DEGRADATION USING MACHINE VISION 

 
Summary. A number of physical methods are used to survey railway track ballast to 

assess its degradation as a function of deposition. Simulation tests on track models are also 
conducted. These testing methods, which are generally labour-intensive and expensive, 
provide an accurate understanding of the extent of ballast degradation. However, the 
impact of inadequate maintenance can be observed, even on the surface. Therefore, it 
seems natural in this case to use image registration. State-of-the-art machine vision systems 
of track geometry cars provide the means to do this. Obtained ballast images provide a 
baseline for evaluating its level in relation to sleepers. However, no information is available 
on other signs of track degradation, such as overgrown vegetation (weeds) or the so-called 
local muddy areas, which are generally a consequence of poor drainage and a lack of 
subgrade insulation. These degradations are observed to generate distinctive colour images 
that are superimposed on the overall image of the ballast surface. They differ in colour and 
shape. Hence, the authors used this phenomenon to develop an algorithm for the extraction 
of ballast degradation images based on RGB imaging. Surface descriptors have also been 
offered to assess these degradations. Extensive measurement material from the railway 
lines was used to conduct survey experiments based on the examples. The results clearly 
demonstrate the high success rate of the applied method.  

 
 

1. INTRODUCTION 
 
Conventional ballasted tracks formed from well-distributed crushed stone are used as the main 

structure for railway lines worldwide. The primary task is to absorb the thrust originating from a train 
and to distribute it over as large an area as possible, thereby providing appropriate cushioning and 
damping properties. The use of an appropriate track ballast is critical to the safe and smooth running of 
a train [28].  

Despite these benefits of the ballast, it is important to anticipate its continuous degradation, such as 
abrasion and cracking under high cyclic load (which causes track deterioration) and permanent geometry 
deformation (which affects safety with a potential loss of track stability and requires frequent and costly 
maintenance). Geotechnical conditions affect degradation by causing the cementation and 
contamination of the ballast, the deposition of eroded materials, mud, and clay from the bedding upwards 
and the intrusion of coal. This leads to differences in subsidence and a reduction in the rigidity of the 
sleeper support by the deconsolidation of the ballast, thus changing the vibration characteristics [8, 11, 
18, 35]. 
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This is accompanied by reduced track drainage capacity. Over time, a track located on a wet bedding 
with cohesive soils that are not separated from the ballast by a protective covering will settle 
disproportionately further. Silt and clay particles are sucked up with water and carried into the ballast, 
and the train thrust transmitted to the sleepers acts as a pump. Therefore, the ballast gets contaminated 
with these fine particles, which form mud when wet and a hard crust when there is a dry period. Voids 
are also formed, making it less comfortable to travel. The maintenance of a wet bedding may involve 
the local replacement of the ballast. However, unless the underlying cause is addressed, the problem is 
likely to recur, requiring repeated maintenance operations. This is an expensive and relatively inefficient 
approach to dealing with the problem. Hence, it is advisable to install a geotextile filter and a geogrid 
[14, 16]. 

Therefore, it is essential to have an efficient monitoring system to enhance the maintenance of the 
railroad ballast, which entails periodic maintenance and repairs. These are labour-intensive and 
expensive operations, which are supported by intensive research work in this field [1, 12, 26, 31, 34]. 

There are two main approaches applied to help understand the mechanical behaviour of a railroad 
ballast that leads to its failure: experimentation and modelling [1-2]. Conventional laboratory sampling 
experiments have produced inaccurate results due to the large size of the ballast particles in relation to 
the sample size. Therefore, a non-invasive ballast test method with a ground penetrating radar (GPR) is 
commonly applied [29, 31]. It uses polarised high-frequency radio waves, usually in the range of several 
hundred MHz to several GHz. The GPR transmitter and antenna emit an electromagnetic wave into the 
railway subgrade. The boundary between materials of different permeability causes wave reflection, 
refraction or scattering. The structural image of the ballast and deeper layers of the subgrade obtained 
by GPR surveying identifies its degradation, particularly contamination, mud patches, and water 
stagnation, with expected increased wave suppression [20]. Therefore, this GPR measurement technique 
is particularly appropriate for railway track transition zones, where there are significant changes in the 
vertical structure of the track [36-37]. 

Enhanced signal processing algorithms, including bicubic interpolation, gain compensation, and 
reflection signal envelope extraction combined with background removal, have been implemented in 
the latest ultra-wideband GPR radar developments to effectively eliminate noise and interference, 
thereby improving the detection of ballast contamination [38].  

A variation of the GPR is the spectral analysis of surface waves method, which is an in-situ seismic 
method for measuring the velocity of ballast transverse waves. The dispersive characteristics of Rayleigh 
waves are used here. As a result, Young’s modulus is calculated for both clean and soiled ballasts under 
wet and dry conditions [32-33]. 

By using different approaches to modelling the properties of the ballast material, it is indeed feasible 
to aggregate the scanning areas, thus increasing the accuracy of the surveys, which ultimately leads to 
positive economic results and minimal maintenance and replacement costs [4]. 

For finite element method modelling, edge cracking at the sleeper/ballast contact is surveyed. Both 
edge cracking and particle movement in the ballast bed were found to affect the subsidence of the 
sleeper. These simulations, therefore, can aid the general understanding of micro-macro phenomena 
involving railway ballasts. This can help upgrade track components and track design based on simulation 
models that incorporate the physical behaviour of the ballast [6]. In modelling, the best results are 
obtained by conducting triaxial modelling [3]. 

Critical spots on a railway track include turnouts, where maintenance is a major cost factor for any 
infrastructure manager. Maintenance work is performed based on a preventive or periodic policy to 
minimise turnout downtime. Such areas pose a significant challenge to the ballast, as its degradation 
largely accounts for excessive failures of turnout components. The measurable extent of ballast 
degradation and packing, in this case, is the exceedance of turnout geometry standards, which is a 
predictor of their maintenance [7]. 

Therefore, models of ballast degradation are developed and compared based on regression analysis 
and stochastic processes (normal and gamma distributions). These models are developed for different 
sections of a single turnout, as well as for different turnouts with variable geographical locations [5]. 

Important signs of significant degradation of the ballast on the surface are vegetation overgrowth and 
the formation of local muddy areas (LMAs) characterised by mud pumping [22, 24].  
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PKP PLK S.A. classifies the condition of the ballast [17] as good with no LMAs, rarely visible weeds, 
full gravel pack of the longitudinal side of sleepers and no empty spaces under the sleepers (Fig. 1a). 

 
a) 

 

b) 

 
c) 

 

d)  

 
 
Fig. 1. Examples of track ballast degradation (authors’ photos from the PLK and LHS lines): a) Good condition, 

line 65, Zwierzyniec – Biłgoraj route, b) average condition, line 61, Kielce – Fosowskie route, Małogoszcz 
station, c) poor condition, line 7, Lublin Towarowy station, and d) very poor condition, line 91,  
Kraków Główny – Medyka 

 
An average condition means there are single LMAs on not more than two adjacent sleepers at 

amounts not exceeding 15% of the surface of the sleepers. There is also heavy weed infestation, and 
individual sleepers have their longitudinal sides exposed up to 2/3 of their height (Fig. 1b).  

A poor condition means LMAs cover three to five consecutive sleepers at an amount of up to 30% 
of all sleepers. There is also potential heavy weed infestation and a lack of ballast between sleepers up 
to 2/3 of their height (Fig. 1c).  

A ballast in very poor condition means the LMAs cover more than five consecutive sleepers at an 
amount greater than 30% of all sleepers; there are also voids between sleepers and completely exposed 
longitudinal sides of sleepers over a length of more than 4 m (Fig. 1d).  

Therefore, it seems obvious in this case to use image registration of the ballast. This is enabled by 
the modern machine vision systems of track geometry cars.  

In standard surveying solutions of machine vision systems equipped with cameras installed on rail 
vehicles (motor cars), the detection, segmentation, recognition, and evaluation of defects of railway 
track components, including turnouts, is performed. These include defects in rails, their fastenings and 
joints, and cracks in the sleepers [25]. 

Owing to the important role of the ballast in rail track maintenance, diagnostic options have been 
supplemented with a system that registers colour images of the ballast, including light detection and 
ranging, by which a laser beam illuminates the track and a camera records the image of the reflection 
from the ballast (surface map). This forms the basis for evaluating level the ballast against the sleepers, 
allowing faster and more accurate maintenance [27, 38]. 
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These systems do not have algorithms that provide information regarding the recognition of the 
indicated symptoms of ballast degradation, namely vegetation and LMAs, which is the main objective 
of the authors’ considerations. 

 
 

2. MOBILE MEASURING SYSTEM  
 

During the survey, the authors applied vision data recorded by a specialised vehicle (motor car) 
equipped with a mobile diagnostic laboratory for the comprehensive evaluation of railway lines, Fig. 
2a.  

 
a) 

 

b) 

 
c) 

 

d) 

 
 
Fig. 2. Track geometry car type DP-560 -01 of PKP PLK S.A.: a) A general view, b) a V-CUBE laser system,  

c) a view of measurement and machine vision displays, and d) a ballast visualisation display (red colour) 
 

With lasers and camera units, system provides a track bed check to measure the geometry of the track 
and rails, check the condition of sleepers (cracks) and ballast (level), and even perform catenary 
diagnostics, as shown in Fig. 2c. 

Cameras on the vehicle register the railway route and allow faults to be detected quickly. Non-contact 
laser systems enable measurements to be taken without affecting railway signalling systems; thus, train 
traffic on the network is not restricted. 

The vehicle, which had been operated for about two years by the PKP PLK S.A. Diagnostic Centre, 
was equipped with measuring equipment by the Italian company Mermec [23]. The equipment is capable 
of surveying around 40,000 kilometres of track per year at a maximum speed of 120 km/h, thereby 
collecting tens of terabytes of diagnostic data. 

Structurally, the vehicle is suspended on 2 two-axle bogies with pneumatic suspension units. This 
has a significant impact, above all, on the correct measurement results. It is also equipped with the ETCS 
Level 2 system. 
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The vehicle running gear uses the V-CUBE universal laser system (Fig. 2b). This system is able to 
capture images from measurements in the speed range from 0 to 200 km/h from three different 
subsystems, thus providing a complete check of the track infrastructure. It automatically identifies more 
than 50 different types of defects, including those on the running surface of rails, their fastenings, 
sleepers, and (the main area of interest for the authors) the subgrade (Fig. 2d). Due to the specific system 
and the construction of the equipment, the ballast shoulder is not recorded. Such research would require 
a completely different measurement method; as with the current train, the limits of rolling stock would 
be exceeded. 

 
 

3. ALGORITHM FOR VEGETATION AND LMA EXTRACTION FROM BALLAST 
IMAGES 
 
In medicine [10, 40] as well as in agriculture [13, 19], one can find algorithms that use colour 

intensity distributions to detect desired objects such as tumours or crop areas. The authors have used 
similar methods for vegetation and LMA extraction from ballast images. 

The algorithm applies the RGB colour space model, which uses 24-bit colours (8 bits for each of the 
component colours). Each colour is saved with components that assume a value in the 0-255 range. In 
the RGB model, values of 0 of all components produce black, while values of 255 produce white. 

The colour intensity distribution of images of a railway track ballast degraded by areas of vegetation 
(weeds) and LMAs can be represented by the following function: 

f(x, y, nR, nG, nB) = ∭ 𝑔!!"!#"!$"
(𝑥, 𝑦, 𝜈" , 𝜈# , 𝜈$)𝛿(𝜈" − 𝜈"")𝛿(𝜈# − 𝜈#")𝛿(𝜈$ −

𝜈$")𝑑𝜈""𝑑𝜈#"𝑑𝜈$"    ,                                                           (1) 
where 𝜈! , 𝜈" , 𝜈# – the colour components in the RGB model of a given point in the plane of the image 
in question and 𝜈!! , 𝜈"! , 𝜈#! – the colour components in the area of vegetation or LMAs (integration is 
performed after these components). 

Integration after 𝑁!! , 𝑁"! , 𝑁#! is performed after colours intensify in an area limited to the ambient 
area of a particular colour. 𝛿 represents the Dirac delta distribution.  

Actual images are described as sets of pixels, each with coordinates and an assigned colour. Thus, 
formula (1), in a discrete form, assumes the following form: 

f(xi, yi, nnR, nnB, nnG) = ∑ ∑ ∑ 𝑔!$"
(𝑥% , 𝑦% , 𝑛" , 𝑛# , 𝑛$)𝛿&!,&!"𝛿&#,&#"𝛿&$,&$"!#"!!"   ,   (2) 

where the integration in Formula (1) has been replaced by aggregation after the colour intensities of the 
individual pixels. The Dirac delta functions have been replaced by Kronecker symbols. 

Aggregating after 𝑁!! , 𝑁"! , 𝑁#! for the selected colour, as described by the triple nR’, nG’, and nB’ and 
assuming the colour bandwidth where the pixels have a non-zero value, the following intervals are 
obtained: [nR’ - DnR’, nR’ + DnR’], [nG’ - DnG’, nG’ + DnG’], and [nB’ - DnB’, nB’ + DnB’]. 

If a given pixel has a colour within these intervals, it will retain its colour; otherwise, the colour will 
be zero (black). 

The extraction procedure for vegetation areas or LMAs has been developed by one of the co-authors 
in the Delphi program. An example is shown in Fig. 3a, in which the original ballast image, contaminated 
with vegetation (weeds), as registered by the vehicle machine vision system, is displayed. 

First, a pixel of a specific colour is selected – in Fig. 3a, it is yellow, representing vegetation growing 
above the track level – and a procedure is launched to select colours within the described intervals. If 
the pixel colour is outside these intervals, it assumes a value of zero (i.e., black is added), as shown in 
Fig. 3b. Of course, the width of these intervals matters for the extraction of the corresponding image 
areas. Figs. 3b and 3c show images of different values of the parameter Dnx’, assuming that DnR’ = DnG’ 
= DnB’ = Dn. Fig. 3b shows the image obtained for Dn = 10, and Fig. 3c shows the image obtained for Dn 
= 40. 

If the algorithm does not cover all the colours corresponding to vegetation, as shown in Fig. 3a, in 
which white and dark yellow also appear, it seems natural to complete the procedure for these colours, 
as shown in Figs. 4a and 4b. The superposition of these images for Dn = 40 resulted in the image depicted 
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in Fig. 4c. The full vegetation image shown in Fig. 4d was obtained when supplemented by the image 
from Fig. 3c, which realistically corresponds to its extraction from Fig. 3a, as highlighted by their 3D 
images in Fig. 5. 

Of course, the number of aggregated partial images assigned to each colour can be variable and 
depends on their shades, usually from one to four, as in the example with vegetation shown above. 

Further experiments on the operation of the algorithm were performed for LMAs, where almost 
continuous coherent ballast areas are visible without differentiating (discretising) the stones. 

The first LMA piece is level with the top surface of the sleepers (red), and the second is below this 
surface (purple), as shown in Fig. 6a. Fig. 6b highlights the red colour of the image, and Fig. 6c 
highlights the purple colour, which is the second piece of the LMA image. The yellow-orange stones in 
Fig. 6a (in the area of the final image from Fig. 5d) are depicted as black holes. 

After applying superposition for vegetation, a full image of the LMA in the area of the four sleepers 
was obtained (Fig. 6d). Unlike the example with vegetation, this image is limited to two colours. 

The images obtained with this method show that the method is effective. Good extraction of the 
selected colours, corresponding vegetation (weeds), LMAs, and other ballast contamination sources 
resulting from the operation of rail vehicles is achievable. 

 
a) 

 

b) 

 

c) 

 
 
Fig. 3. An example of how the ballast vegetation extraction algorithm works for yellow colour: a) The original 

image, b) the image for Dn = 10, and c) the image for Dn = 40 
 
 
4. SURFACE DESCRIPTORS IN THE EVALUATION OF DEGRADED BALLAST IMAGES 

 
Using the algorithm suggested by the authors, an attempt was made to determine the key descriptors 

of the images (degraded ballast areas) as defined in the co-author’s work [21]. PKP PLK S.A. does not 
precisely define its degradation criteria upon image analysis but only characterises them descriptively, 
as presented in point 1. Therefore, the authors considered that the most natural measure would be the 
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geometric surface descriptors of ballast areas with poor maintenance, degraded vegetation (weeds), or 
LMAs. 

a) 

 

b) 

 

c) 

 

d) 

 
 
Fig. 4. Example of the superposition of the operation of the ballast vegetation extraction algorithm: a) a white 

image from 3a, b) an orange image from 3a, c) an aggregate of the images from 4a and 4b, and d) an 
aggregate of the images in 4c and 3c 

 
a) 

 

b) 

 
  
Fig. 5. 3D images of ballast vegetation: a) The original image from Fig. 3a and b) the image after extraction of 

vegetation from Fig. 4d 
 

The descriptor calculations provided by the ImageJ program (Image Processing and Analysis in Java) 
were used [9, 15]. 
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The program is written in Java and works with 8-, 16- or 32-bit greyscale images, as well as 24-bit 
colour images. It performs most of the standard image processing operations, as well as basic 
measurements and analysis, to be used in assessing the ballast condition.  

The analysis was based on the simultaneous thresholding of RGB colour images in three channels, 
which was performed in the ImageJ program using the Threshold Color function (Fig. 7a). The LMA 
examples in Fig. 6d and the vegetation examples in Fig. 4d were used by applying the mean thresholding 
method. Conversion into B&W images yielded the images shown in Figs. 7d and 7e. Choosing a 
different method entails a change in the image after thresholding and, consequently, in the values of the 
descriptors determined, as described extensively in [30]. 

 
a) 

 

b) 

 

c) 

 

d) 

 
 
Fig. 6. Images for an LMA: a) The original image, b) the image after selecting red from 6a, c) the image after 

selecting violet from 6a, and d) the image after totalling 6b and 6c 
 
The choice of descriptors is made in the Set Measurement window (Fig. 7b). Fig. 7c specifies the 

size and circularity ranges of the areas considered when computing the descriptors. The total area of a 
single sample is 288x1024=294,912 pixels. 

By converting the RGB image of the ballast area degradation 𝑑(𝑚, 𝑛) into a binary image (1 and 0 
correspond to the points belonging to the degraded and non-degraded areas, respectively), with a sample 
size of 𝑀𝑁 pixels for LMAs in Fig. 6d or the vegetation shown in Fig. 6e, their area can be defined as 
follows [21]: 

𝐴$ = ∑ ∑ 𝑑(𝑚, 𝑛)%&'
()*

+&'
,)*    .                                                          (3) 

On the other hand, using the threshold criterion, the ratio of the degraded ballast area to the maximum 
value of the aggregate of the pixel amplitudes in the entire sample area can be determined (i.e., 
255	𝑀𝑁). For the assumed threshold 𝑇$, a check is made to ensure that it does not exceed an arbitrarily 
assumed value:  
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𝑇$ =
-"

.//+%
100%     .                                                            (4) 

Using the example of the extracted LMA from Fig. 6d, the area fraction of this degradation (59%) 
was obtained in the total area of the sample image. This can be used as the main criterion for assessing 
damage to the track ballast, assuming, for example, a limit value of 50%. An increase in the degradation 
area, brought about by the sleepers, has to be accounted for (Fig. 7d). 

Similarly, a 12% area of degradation was obtained for the vegetation in Fig. 4d. In this case, the area 
of the sleepers is irrelevant, as their colour is significantly distant from the weeds protruding above the 
surface. 

The image degradation centre, in turn, is defined by a pair of coordinates, 𝑚, 𝑛 [21]: 
𝑚 = '

(&
∑ ∑ 𝑚𝑑(𝑚, 𝑛)!)'

&*+
,)'
-*+ , 𝑛 = '

(&
∑ ∑ 𝑛𝑑(𝑚, 𝑛)!)'

&*+
,)'
-*+    .                  (5) 

This description helps locate degradations in the two-dimensional image plane. In the example of the 
LMA in Fig. 7d, 𝑚 =128 and 𝑛 =523. For the vegetation in Fig. 7e, 𝑚 = 147 and 𝑛 =519. 

By evaluating the shape and position of the ballast degradation in the surveyed sample image, shape 
descriptors, which provide information about the shape and orientation of the degraded image, were 
also determined. The skewness descriptor, defined as the angle 𝛩 to the axis 𝑌 at the centre of the area 
𝑚, 𝑛, can be determined from the following expression:  

𝑡𝑔(2𝛩) = 2 ∑ ∑ ,($(,,()#$%
&'(

)$%
*'(

∑ ∑ ,+$(,,()&∑ ∑ (+$(,,()#$%
&'(

)$%
*'(

#$%
&'(

)$%
*'(

                                 (6) 

For the LMA, the skewness descriptor was 𝛩~28*, and for the vegetation, the skewness descriptor 
was 𝛩~10*, as the degradation images deviate little from the vertical axis.  

Knowing the image perimeter 𝑂$ of the ballast degradation area allows another shape descriptor to 
be determined. In a binary image, the image perimeter can be determined by counting the number of 
pixels described as “1” that have adjacent pixels described as “0.” Once the perimeter 𝑂$ and area 𝐴$ 
have been found, the so-called thinness factor, which is a measure of roundness, is calculated: 

𝑙 = 4𝛱 ? -"
4"

+@   .                                                             (7) 

The closer this value is to 1, the more the image resembles a circle. Should the perimeter become 
larger compared to the surface area, this ratio decreases, and the image becomes thinner. In the examples 
shown in Figs. 7d and 7e, the roundness is about 0.28. 

The degradation shape can also be evaluated by Fit Ellipse; this program includes the outer edges of 
the entire sample. Thus, in the examples, the axes extend beyond the sample area. The dimension of the 
minor axis is 324 pixels and the major axis is 1155 pixels. 

As a result of further surveys, such descriptor values were obtained for LMAs and vegetation, 
respectively, as follows [30]: mean – 151 and 29, standard deviation – 125 and 63, minimum and 
maximum grey values – 0 and 255, and median – 255 due to the predominant number of image pixels 
at level 1 (white) and 0 (black) for weeds. 

Using the ImageJ Analyze Particles function, a detailed analysis of measurements of separated image 
fractions in the degradation area can be performed; thus, shape selection depends on size and roundness 
(Fig. 7c). In the example shown in Fig. 7d, the LMA area was divided into fractions containing 1 to 
1953 pixels, and the ranged from 1 to 817 (Fig. 7e). 

When extracting fragments from an image, each successively extracted fragment is assigned another 
number. Fig. 8a shows the relationship between the area of an extracted image fragment and its assigned 
number for the example vegetation samples in Fig. 7e. The extraction process yielded five fragments 
(fragment numbers 64, 293, 323, 429, and 613) with the largest area. Fig. 8b shows the dependence of 
the median pixel intensity occurring in the extracted fragment on the number assigned to it for the same 
samples in Fig. 7e. Its minimum value is 21, and its maximum value is 185. 

The function also allows pixels bordering the edge of the image to be excluded (Exclude on Edges), 
which provides more reliable measurements of individual parts of the image. 
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a) 

 

b) 

 

d)  

 

e) 

 

c) 

 

Fig. 7. Image measurement parameters: a) A thresholding application window, b) and c) measurement windows 
and images after thresholding, d) LMAs from Fig. 6d, and e) the vegetation from Fig. 4d 

 
 

5. CONCLUSIONS AND FURTHER WORK 
 
The present survey demonstrates the feasibility of using RGB colour images to extract ballast 

degradation, such as vegetation (weeds) and LMAs. This method, along with ballast evaluation based 
on surface descriptors, provides a simple and intuitive pathway for indicating locations on a track where 
there is a need for immediate maintenance operations without the need to conduct the complex surveys 
presented in the introduction of this work. 

Additionally, the descriptors used in this work make it possible to define the features of the selected 
areas. This allows for a qualitative comparison of the areas extracted by the algorithm. 

The track visualisation recently used in diagnostic surveys using high-resolution cameras in the track 
geometry cars creates the proper framework for this process. 

The authors anticipate that in further work, it would be desirable to involve more sophisticated 
methods based on deep learning networks. The result is expected to be high-quality image processing 
and recognition algorithms that provide comprehensive railway track diagnostics. 
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a) 

 

b)

 
Fig. 8. Illustration of the relationships between the extracted vegetation image fragments from Fig. 7e for their a) 

area and b) median pixel brightness 
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