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Summary. Planning the frequency of rail services is closely related to forecasting the 

number of passengers and is part of the comprehensive analysis of railway systems. Most 
of the research presented in the literature focuses only on selected areas of this system (e.g. 
urban agglomerations, urban underground transport, transfer nodes), without presenting a 
comprehensive evaluation that would provide full knowledge and diagnostics of this mode 
of transport (i.e. railway transport). Therefore, this article presents methods for modelling 
passenger flow in rail traffic at a national level (using the example of Poland). Time series 
models were used to forecast the number of passengers in rail transport. The error, trend, 
and seasonality (ETS) exponential smoothing model and the model belonging to the 
ARMA class were used. An adequate model was selected, allowing future values to be 
forecast. The autoregressive integrated moving average (ARIMA) model follows the tested 
series better than the ETS model and is characterised by the lowest values of forecast errors 
in relation to the test set. The forecast based on the ARIMA model is characterised by a 
better detection of the trends and seasonality of the series. The results of the present study 
are considered to form the basis for solving potential rail traffic problems, which depend 
on the volume of passenger traffic, at the central level. The methods presented can also be 
implemented in other systems with similar characteristics, which affects the usability of 
the presented solutions. 

 
 

1. INTRODUCTION 
 

Forecasting the number of passengers is an important part of planning the frequency of rail transport, 
and issues related to the organization and evaluation of railway systems are very often analysed and 
researched. For example, the literature provides various solutions to selected aspects of the problem of 
constructing a rational timetable for trains in railway networks [26, 10, 29]. Aspects related to passenger 
satisfaction are also widely analysed, including travel time [9, 22], quality of travel expressed the level 
of satisfaction with the service, cleanliness of carriages [7], functioning of the ticketing system, method 
of providing information, and travel comfort [23]. An interesting article on the analysis and evaluation 
of the quality of passenger rail transport logistics was proposed by Dedik et al. [6]. The authors describe 
the relationship between logistics and transport, logistic needs of transport and logistics functions in rail 
transport. They also provide quality assessment, including a description of the indicators used and 
propose a new evaluation methodology.  
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The safety of travel is particularly emphasised [7, 15, 17, 23]. In [28], an analysis of the safety of 
passenger traffic at the station was proposed based on risk theory. By combining fuzzy theory with 
the comprehensive assessment method, a holistic model based on passenger flow density and evacuation 
time was developed to identify and analyse the overall security level of a transit station. 

Interesting works related to rail transport also include studies on the method of optimal (in terms of 
energy-saving) train driving, ways to meet specific safety requirements [27], and the adaptive design of 
the proportional-integral-derivative controller, which significantly improves the accuracy of a train’s 
speed control and solves the problem of speed fluctuations when moving through variable terrain [12]. 

The common element of most analyses that influences travel planning [26, 10], travel time [9, 22], 
quality of transport [7, 23, 6], and safety is the number of passengers. Therefore, the assessment and 
prediction of this factor are particularly important as the foundation of other studies. 

The passenger flow rate may depend on many factors and is subject to systematic and random 
changes. Therefore, it is important to conduct research to identify a mathematical model that effectively 
describes the analysed time series and guarantees that predictions are as close as possible to real 
observations [3, 14]. For example, in [8], the passenger flow was forecast during a disruption of the 
operation of one of the selected metro lines in the Chinese province of Guangdong in order to estimate 
the potential for danger. In [21], the reconstruction of the current communication system in Java, 
Indonesia, was analysed by estimating the number of passengers using existing means of transport (e.g. 
road, rail, and air) who would be willing to switch to high-speed rail. For this purpose, the multinomial 
logit model was used. 

In [20], a dynamic regression model was used to forecast peak spreading in urban rail transit demand, 
while, in [25], a short-term forecast model was developed for rail transport as one of the most important 
issues in the urban intelligent transport system. For this purpose, a new model called the spatio-temporal 
long short-term network (which is based on the long short-term network) was used. 

The literature shows that most of the analyses focus on large urban agglomerations. The popularity 
of rail transport (especially underground systems [11, 30]) is systematically increasing, especially due 
to the deteriorating conditions of road transport (congestion, stoppages in traffic jams, increased exhaust 
emissions, and smog [4]). Overall evaluations of national rail networks are comparatively rare. They 
have been done, for example, in relation to South Korea [16], Sweden [1], and Slovakia [5]. Moreover, 
most of the publications concern the application of single mathematical methods to solve a specific 
transport problem. Few works propose and compare several variants to choose the optimal solution [2]. 

The conclusions drawn from the literature review motivated the present study, the aim of which is to 
model the passenger flow in rail traffic at the national level (in Poland). The research hypothesis is that 
it is possible to reliably forecast the traffic of passengers travelling by rail based on historical data. 
Selected mathematical models dedicated to time series with the characteristics presented by the collected 
observations were proposed, the selection criteria were determined, and the selected models were 
evaluated. In addition to identifying the model, another goal of this study is to forecast the number of 
passengers in subsequent periods. The proposed method indicates the procedure algorithm, 
mathematical models that can be used, their evaluation, and the choice of the best one. This method can 
constitute the basis for solving problems in rail traffic, depending on the volume of passenger traffic. It 
can also be implemented to evaluate this phenomenon in systems other than rail systems. 

The present article consists of the introduction, evaluation and characteristics of the collected 
research sample, a presentation of the mathematical methods used, and the construction of mathematical 
models used for empirical data on the number of passengers on the Polish railway lines. Then, the 
proposed models were evaluated, and the best one was selected. Finally, a summary of the results 
obtained, final conclusions, and the concept of further research were presented. 
 
2. FORECASTING THE NUMBER OF RAIL TRANSPORT PASSENGERS 

  
2.1.  Characteristics of the research sample 

 

Observations regarding the number of passengers in rail transport from 2014-2019 were investigated 
[24]. The data presented in Fig. 1 was archived on a monthly basis.  
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Fig. 1. The number of passengers using rail transport from 2014-2019 

  
Fig. 1 shows a clear long-term trend. Moreover, the data is subject to seasonal changes, which is 

confirmed by Fig. 2. 
  

 
 
Fig. 2. Graph of the seasonality of rail passengers from 2014-2019 

 
The period from January to February includes the winter holidays in Poland. During this period, there 

is an increased demand for transport services, especially long-distance services. The increase seen in 
Fig. 2 results from the interest of passengers in using the railways to go on vacation during the winter 
break. Another increase in the number of passengers is visible at the beginning of May, which is related 
to the May long weekend. As in the case of the winter holidays, passengers eagerly choose rail as a 
means of transport, as it allows them to reach their destinations, even those that are several hundred 
kilometres away. 

Between May and August, there is a decline in interest in using railways. This is due to the fact that 
during the holiday period, passengers who use it to get to their place of study or work cease to use it. 
Passengers do not use monthly or periodic tickets during this time. Many people use rail transport to go 
on vacation during the summer holidays, but these uses of rail transport represent individual trips (as 
opposed to cyclical trips), determined by the vacation date. In addition, during the holiday season, 
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individual means of car transport or air transport are also popular and are chosen especially often in the 
case of foreign travel. 

The increase starting in September and continuing in October is due to the return of students and the 
end of the holiday period. At this point, long-term tickets regain popularity. 

The decline in November and December is due to the lack of demand for long-distance routes. The 
weather conditions that characterise the winter period are not favourable for short-distance travel. 
During the winter, some passengers stop using railways in favour of carpooling. 

A systematic increase in the number of passengers is also noticeable in the subsequent analysed 
years, which confirms the growing development observed in Fig. 1. Moreover, there is a clear seasonal 
trend. As a result, the series is non-stationary. The separated components of the tested time series are 
presented in Fig. 3. 

 
Fig. 3. Decomposition of the tested time series 

  
The error, trend, and seasonality (ETS) and autoregressive integrated moving average (ARIMA) 

exponential smoothing models were proposed to describe the analysed series. The optimal variant in 
each group was selected on the basis of the information criterion assessment (AIC - Akaike information 
criterion). The collected data set was divided into two groups – a teaching set and a test set – to check 
which of the proposed models is more appropriate for forecasting future values. The training set was 
used to construct models identifying the series under study and to define the forecast for the next period. 
These predictions were later compared with the test set. The teaching set includes observations made 
from January 2014 to December 2018, while the test set covers the entire year of 2019. The adopted 
division is shown in Fig. 4. 

 
2.2.  Forecasts using exponential smoothing 

 
This study uses ETS, a general class of the exponential smoothing state space model. Elements can 

be combined in an additive, multiplicative, or mixed manner. The trend in exponential smoothing is a 
combination of two components (i.e. level l and increment b), which are linked together, taking into 
account the damping parameter ϕ∈ [0,1] in five possible ways. Marking 𝑇!	as the trend forecast for h 
successive periods, we get the following [13]: 

N - No trend (none): 
 𝑇! = 𝑙  (1) 
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A - Additive: 
 𝑇! = 𝑙 + 𝑏ℎ  (2) 

Ad - Additive damped: 
 𝑇! = 𝑙 + (	𝜙 + 𝜙" +⋯+ 𝜙!)𝑏 (3) 

M - Multiplicative: 
 𝑇!=𝑙𝑏! (4) 

Md - Multiplicative damped: 
 𝑇!=𝑙𝑏#	%&%!&⋯&%"( (5) 

  

 
Fig. 4. Division of the collected observations into the teaching and test sets 

 
Taking into account only the seasonal component (no seasonality, additive variant, and multiplicative 

variant) and the trend, we obtain 15 exponential smoothing models. Taking into account additionally 
random additive or multiplicative disturbances, we obtain 30 different models [13]. 

The value optimising the form of the model may be the minimisation of the selected information 
criterion (AIC, AICC, BIC) or the forecast error (MSE, MAPE). In this article, the AIC was used to 
compare the models. 

Let k be the number of estimated parameters and L be the maximum likelihood function of the model. 
The AIC value is calculated using the following formula: 
 𝐴𝐼𝐶 = 	−2𝑙𝑛𝐿 + 2𝑘  (6) 

The parameters of various ETS models were estimated, and the AIC information criterion and the 
MAPE error were calculated for each. The results are presented in Tab. 1. 

Based on the results, a model was selected with the smallest values of the AIC criterion and the 
MAPE error. This model was the ETS (ANA) model; however, this model does not take into account 
the previously diagnosed trend. Therefore, for further analysis, a model with an additive trend was also 
selected – ETS (AAA) – whose AIC and MAPE values were comparatively low. The ETS (AAA) model 
is of the following form: 
 𝑥) = 𝑙)*+ + 𝑏)*+ + 𝑠)*, + 𝜀), (7) 
 𝑙) = 𝑙)*+ + 𝑏)*+ + 𝛼𝜀), (8) 
 𝑏) = 𝑏)*+ + 𝛽𝜀), (9) 
 𝑠) = 𝑠)*, + 𝛾𝜀), (10) 
where {𝜀)})-+ is a series of residuals. 

If 𝑏. = 0 and  𝛽 = 0, we get the ETS model (A,N,A), defined by the equation: 
 𝑥) = 𝑙)*+ + 𝑠)*, + 𝜀), (11) 
 𝑙) = 𝑙)*+ + 𝛼𝜀), (12) 
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 𝑠) = 𝑠)*, + 𝛾𝜀) (13) 
where {𝜀"}"#$ is a series of residuals. 

The estimated parameters of both models are presented in Tab. 3. 
The matching of smoothing models to the test observations is presented in Fig. 5. The model takes 

into account the trend and, thus, better reflects the character of the series. 
 

Table 1 
The AIC criterion and MAPE error for selected  

exponential smoothing models 
 

model AIC MAPE 
ANN 262.409 3.802 
MAdM 222.165 2.067 
MMdM 221.542 2.095 
AAA 215.970 2.074 
MAA 216.562 2.074 
MMN 263.159 3.625 
MAN 264.034 3.697 
MNA 213.601 2.007 
MNN 263.373 3.802 
ANA 212.770 2.007 
AAN 263.218 3.697 
MNM 233.950 2.460 

 

Table 3 
Estimated values of parameters of the ETS (AAA) and ETS (ANA) models 

 
 

 
 
  

 
2.3.  Forecast using the ARIMA model 

  
In the next stage of the study, a model belonging to the ARIMA (p, r, q) class, which is a group of 

stationary time series models, was used. Depending on the temporal correlation structure, we 
distinguished the following [4]: 
Model AR (p) - autoregressive model, which we call the {𝑥"}"∈& series satisfying the equation below: 

 
 𝑥" = 𝛼' + 𝛼$𝑥"($ + 𝛼)𝑥"() +…+ 𝛼*𝑥"(* + 𝜀", (14) 
where {𝜖"}"∈& is a sequence of independent random variables with a normal distribution 𝑁(0, 𝜎)). 

Such a series takes into account the existence of a temporal correlation of previous implementations 
of the dependent variable 𝑥". The value of the dependent variable at time t is a linear combination of its 
time-delayed values and the white noise disturbance. 

Model MA (q) - moving average, which we call the {𝑥"}"∈& series, which satisfies the following 
equation: 
 𝑥" = 𝜀" − 𝛽$𝜀"($ − 𝛽)𝜀"() −…− 𝛽+𝜀"(+ (15) 
where {𝜖"}"∈& is a sequence of independent random variables with a normal distribution 𝑁(0, 𝜎)). 

Such a series takes into account the existence of the temporal correlation of the random component. 
Its strength and nature are determined by the q parameter (i.e. the order of the moving average model 
and the individual coefficients of the model (𝛽+)). 

It is possible to create combined (mixed) models [19]. For example, by combining the AR and MA 
models, we can obtain the ARMA time series of the form given bloom: 

model Smoothing parameters 
ETS(A,N,A) 𝛼	 = 	0.6434  𝛾	 = 	0,0001 

ETS(A,A,A) 𝛼	 = 	0.4572 𝛽 = 	0,0001 𝛾	 = 	0,0001 
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𝑥" = 𝛼' + 𝛼$	𝑥"($ + 𝛼)	𝑥"() +…+ 𝛼*	𝑥"(* + 𝜀"	𝛽' + 𝜀" − 𝛽$	𝜀"($ − 
 −𝛽)	𝜀"() −…− 𝛽+𝜀"(+ (16) 

ARMA class models concern stationary series [18]. If this assumption is not met, transformations 
(e.g. differentiation) need to be applied to obtain it. In this way, the ARIMA model and the seasonal 
ARIMA (SARMIMA), which takes seasonality into account, are obtained. In these models, the 
operation of differentiation with delay d was used. 

In the analysed set of observations, we dealt with a trend and seasonality. This is also indicated by 
the analysis of the graphs of the autocorrelation function, where the function values slowly decay, and 
of the partial autocorrelation, where significant values for the delay equal to 12 are shown (Fig. 6). This 
means that the tested series is not stationary. 
 

 
Fig. 5. Graph of the tested time series and forecasts according to the ETS (AAA) and ETS (ANA) models 
 

 
Fig. 6. Graphs of the autocorrelation and partial autocorrelation functions 
  

The lack of stationarity was confirmed by the augmented Dickey-Fuller (ADF) test. The results 
obtained for the subsequent delays are presented in Tab. 4. 

Table 4 
ADF test results 

 
type no drift no trend with drift no trend with drift and trend 
lag     ADF  p.value ADF  p.value ADF  p.value 
0 0 0.049   0.655 - 3.23   0.024 -5.51   0.010 
1 0.020 0.646 -2.79   0.070 -6.31   0.010 
2 0.554   0.799 -1.58   0.490 -4.32   0.010 
3 0.735    0.851 -1.11   0.654 -3.99   0.016 
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As the results of the ADF test show (Tab. 4), stationarity was achieved for the series with drift and 
trend. Therefore, both the drift and trend will be taken into account when constructing the ARIMA 
model. The parameters estimated for the model without drift were also presented so that comparisons 
could be made. The selected results, for which all estimated parameters were statistically significant, are 
presented in Tab. 5. 

Table 5 
Results of the parameter estimations of selected ARIMA class models 

 

 Coefficients: Std. 
Error  

z value   Pr(>|z|)     AIC BIC 

ARIMA(1,0,0)(1,1,0)[12] 
with drift  

ar1      0.491 0.132   3.699 0.0002161 *** 115.44    122.93 
sar1 -0.648  0.113  -5.707  1.147e-08 *** 
drift 0.071 0.010 6.600 4.092e-11 *** 

ARIMA(0,0,0)(1,1,1)[12]  sar1 0.998   0.014    70.397 < 2.2e-16 *** 154.47    160.08 
sma1 -0.953 0.189 -5.021 5.127e-07 ***   

ARIMA(0,0,0)(0,1,1)[12] 
with drift  

sma1 -0.567   0.210   -2.697   0.006977 ** 124.35    129.97 
drift 0.072 0.006 11.728 < 2.2e-16 ***   

  
The best matching was obtained for the ARIMA (1.0.0) (1.1.0) [12] model with drift, for which the 

AIC and BIC values are the lowest. The matching of this model to the tested series is presented in 
Fig. 7.  

 
Fig. 7. Graph of the tested time series and forecasts according to the ARIMA model (1.0.0) (1.1.0) [12] with drift 

 
 

3. RESULTS AND DISCUSSION 
  

The ARIMA model follows the studied series much better than the ETS model (Fig. 8). 
It is also characterised by the lowest forecast errors (Tab. 6) in relation to the test set. 
 

Table 6 
ETS (AAA) and ARIMA model forecast errors (1,0,0) (1,1,0) [12]  

with drift in relation to the test data 
 

model ME RMSE MAE MPE MAPE MASE 
ETS(AAA) 0,543 1,140 0,928 1,824 3,253 0,870 

ARIMA 0,015 0,664 0,501 -0,006 1,989 0,392 
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Predictions based on the ARIMA model detect both the trend and the seasonality of the series better 
than other models. The rest of the model is quite good (Fig. 9), and the Ljung-Box test (X-squared = 
23.631, p-value = 0.482) indicates no serial correlation. The results are confirmed by the Box-Pierce 
test (X-squared = 18.38, p-value = 0.784). Moreover, the distribution of the residues is consistent with 
the normal distribution at the significance level of α = 0.01. This was confirmed by the results of the 
Lilliefors test (D = 0.120, p-value = 0.011) and the Shapiro-Wilk test (W = 0.978, p-value = 0.249). 

 
 

4. CONCLUSIONS 
 

In response to the few comprehensive studies in the literature, the passenger flow in the rail traffic at 
the national level was mathematically analysed. The results show that it is possible to forecast reliably 
based on available historical data. The study uses selected mathematical models designed for time series 
with appropriate characteristics of the information collected.  

The number of railway passengers was forecast based on data from Poland from 2014-2019. An 
unequivocal conclusion was drawn about the constantly growing number of passengers using rail 
transport. It was noticed that the seasonality of using the railways is directly related to the occurrence of 
seasonal breaks in compulsory schooling and depends on their length. The number of passengers 
increases during the winter holidays and on long weekends, while it decreases during the summer 
holidays (specifically considering long-term tickets). The analysis of seasonality suggests that the main 
recipients of transport services may be students who move between their hometowns and academic 
centres. 

The ETS and ARIMA models were used to describe the analysed series. The ARIMA model follows 
the tested series better than the ETS model and exhibits fewer forecast errors for the test set. However, 
as the study was conducted using time series, it did not take into account factors such as transport policy, 
population size, or economic conditions. The above-mentioned factors undoubtedly impact the number 
of passengers using rail transport. Nevertheless, the research hypothesis was confirmed. By using two 
models and comparing the results of their application, railway passenger traffic was forecast reliably. 

This article can serve as a basis for further studies covering a wider time horizon and taking into 
account more variables (e.g. user profile). Knowledge of passenger requirements would allow for 
personalisation of the offer to the largest group of recipients possible. A similar analysis may also be 
carried out for other modes of transport, which would not only allow passenger traffic to be forecast but 
would also make comparisons between the branches possible. 

 

 
Fig. 8. Comparison of the forecast according to the ARIMA and ETS models 
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Fig. 9. Analysis of the residuals distribution of the ARIMA model (1.0.0) (1.1.0) [12] 
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