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DETERMINATION OF OPTIMISED PICK-UP AND DROP-OFF 
LOCATIONS IN TRANSPORT ROUTING – A COST DISTANCE APPROACH 

 
Summary. With the emergence of dynamic passenger transport systems, such as 

demand-responsive transport (DRT) and ride-sharing without predetermined stop locations 
as used for static bus routes, accurate routing for these flexible door-to-door transport 
services is needed. Routing between two addresses requires the assignment of addresses to 
suitable, so-called snapping points as reference points on the road network. Therefore, 
many conventional routing machines use perpendicular distance to identify the nearest 
point on the road network. However, this technique tends to produce inaccurate results if 
the access to a building is not reachable from the road segment with the shortest 
perpendicular distance. We provide a novel approach to identify the access to buildings 
(paths) based on remote sensing data to obtain more reasonable stop locations for passenger 
transport. Multispectral images, OpenStreetMap data, and light detection and ranging 
(LiDAR) data were used to perform a cost distance analysis based on vegetation cover, 
building footprints, and the slope of the terrain to identify such optimised stop locations. 
We assumed that the access to buildings on the shortest route to the building’s entrance 
consists of little vegetation cover and minimal slope of the terrain; furthermore, the 
calculated path should not cross building footprints. Thus, snapping points on the road 
network can be determined based on the most likely path between a building and the road 
network. We validated our results based on a predetermined ideal snapping area 
considering different weightings for the parameters slope, vegetation, and building 
footprints. The results were compared with a conventional routing machine that uses 
perpendicular distance. This routing machine shows a validation rate of 81.4%, whereas 
the validation rate of our presented approach is as high as 90.3%. This new approach 
provides increased accuracy and better comfort for flexible passenger transport systems. 

 
 

1. INTRODUCTION 
 

 
Map matching is a technique that relates a geographical point or a sequence of points to a logical 

real-world model, such as a road network [1]. A typical application of offline map matching is the 
reconstruction of the most likely real driven path of vehicles from sequences of global positioning 
system (GPS) points. This technique is used when GPS points are not directly located on the road 
network due to common inaccuracies. There are many publications on real-time map matching [1 - 6], 
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but few studies have investigated offline map matching [7]. In this work, we focus on so-called road 
snapping, which can be seen as a unique form of offline map matching. 

The basic ideas underlying the already known offline map matching and the special road snapping 
technique that we focus on in this study are similar; however, the aim and, hence, the methods of road 
snapping are different. In road snapping, a single coordinate, usually an address, is related to a point on 
a road network (the snapping point) to identify the starting point of the route for the given coordinate or 
address. Therefore, road snapping by conventional routing machines is based on the perpendicular 
distance. However, some routing machines also use the matching of the name of the address and the 
road name, which is not considered in typical offline map matching. 

The literature on road snapping is scarce [7] for a number of reasons. In the past, offline and, 
especially, real-time map matching was generally more relevant for enhancing the routing and post-
processing of GPS tracks, thus improving map matching. The accuracy of snapping points for pick-up 
and drop-off locations was considered less important in the past by transportation network companies 
since door-to-door transport services were mostly offered by taxi companies, and taxi drivers do not rely 
solely on routing machines due to their local knowledge. With the emergence of more door-to-door 
transport services besides taxis, such as Uber and flexible DRT systems, the accuracy of snapping points 
has become more relevant as drivers of such systems often have less local knowledge than taxi drivers 
and, therefore, often use routing machines. Furthermore, accurate snapping points can play an important 
role in autonomous driving in the future. 

Road snapping is offered, for example, by Google in the Roads application programming interface 
(API) [8] or by the Nearest API from an Open Source Routing Machine (OSRM) [9]. The common 
technique for road snapping is based on perpendicular distance, according to the formula in Equation 1: 

𝑑 = |"#$%&$'|
(("!$%²)

    ,                                                             (1) 
where d is the distance from a point defined by (x, y) to a line defined by Ax + By + C = 0. However, 
road snapping from a geographical point to the road network based on perpendicular distance is not 
sufficient in some cases. One problem with this technique is that, in the real world, the destination 
building might not be connected to the road segment with the shortest distance but to another road 
segment that is further away. This situation occurs, for instance, when a building’s driveway is not part 
of the public road network (e.g., private properties) or when this data is missing and cannot be used to 
determine the snapping point. However, we focus on enhancing suboptimal pick-up and drop-off 
locations, which are also referred to here as stop locations, that result from deficiencies in road snapping 
based on perpendicular distance. 

Figs. 1 and 2 show examples from Google Maps with suboptimal stop locations. In Fig. 1, the stop 
location is on a road without a parking spot or proper access to the building. Since the perpendicular 
distance was used, more suitable parking spots on the northern side of the building are ignored because 
the centroid of the building is closer to the road on the southern side. 

Fig. 2 shows a typical road snapping problem in urban areas. In this case, it can be assumed that 
Google Maps used perpendicular distance in combination with a matching name of the road and the 
address. Consequently, the road segment in the north is chosen instead of the road segment in the 
southeast, even though the southeast road segment has the shortest perpendicular distance to the 
building’s centroid. Nevertheless, the actual access to the building is shown with an orange dashed line. 
These two examples show that stop locations provided by conventional routing machines are sometimes 
inaccurate, which can lead to misleading or even dangerous stop locations in transport routing. 

We provide an alternative approach to identify optimised stop locations that can be used to enhance 
routing for passenger transport services (e.g., door-to-door services). Our aim in this work is to 
investigate the potential of the cost distance approach for road snapping purposes. We also compare our 
results with results from a conventional routing machine. For the alternative approach, we looked for 
parameters that could be helpful in determining the path to buildings entrances. Finally, we made the 
assumption that access to building entrances consists of few vegetation cover, minimal slope of the 
terrain, and that the calculated path should not cross building footprints. We performed a cost distance 
analysis with preprocessed remote sensing data (multispectral imagery and LiDAR) and OpenStreetMap 
data to identify the so-called least cost paths. These can be used to determine the most likely path to a 
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road segment for any building or from any other point. The methodology of a cost distance analysis is 
explained in more detail in the next section. 

 
 

2. FUNDAMENTALS OF COST DISTANCE 
 

Even though the methodology of a cost distance analysis is well known and documented in the field 
of geoinformatics, we want to address a broad audience of mobility researchers. Therefore, we explain 
the basics of a cost distance analysis in this chapter. 

 

 
 

Fig. 1. Road snapping based on perpendicular distance from Google Maps shows a suboptimal snapping point 
without access to the building. The orange dashed line shows the correct access to the building. The 
dotted line depicts the access to the building by [10] 

 

 
 

Fig. 2. Problems in current road snapping based on perpendicular distance. Even if a matching name of the road 
and the given address is used as an additional feature, the actual access to the building (orange dashed 
line) differs from the results provided by Google Maps. The dotted line depicts the access to the building 
by [11] 

 
Cost distance is a ‘procedure for determining least cost paths across continuous surfaces, typically 

using grid representations’ [12]. Cost distance is based on the concept that movement in a continuous 
space requires different kinds of efforts. Therefore, both the length of a route and its difficulty influence 
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the time or cost of completing the route. The concepts of perpendicular distance and cost distance are 
compared in Fig. 3. 

 
Fig. 3. Different distance metrics for finding the least cost path from (1:1) to (1:5) are highlighted in blue. A) Least 

cost path by the perpendicular distance (cost = 5). B) Least cost path by cost distance (cost~=~10) 
 

Cost distance analyses, first defined in the 1950s as cost based proximity analysis [13], are widely 
used in areas such as cartography, archaeology, and computer science. Some possible applications are 
road planning [14] and reconstructing ancient roads with known start points and end points [15]. In 
many studies, the resulting paths are considered realistic [14; 16]. Today, the calculation of the least 
cost path based on cost distance is implemented in most geographic information systems (GISs) [17]. 

The least cost path between two points on a grid can be identified as follows. So-called source cells 
are given points that are referred to as possible destinations. In a cost distance analysis for every cell in 
a grid, the costs of paths to all source cells are computed and compared. The computational time scales 
with the number of source cells and the resolution of the grid or raster. A cost surface is needed as an 
input, which is a gridded representation of a graph that describes the cost per grid-cell. In a grid 
representation of a graph, cell centres represent the nodes of a graph with costs passing the nodes. They 
are connected via edges with adjacent nodes in a graph representation, respectively with adjacent cells 
in a grid representation of a graph [18]. Several possible neighbourhood types can determine the number 
and relations of the adjacent nodes of a cell. The most common ones are shown in Fig. 4. 

The weights of the edges are calculated for horizontal and vertical neighbours as shown in 
Equation 2. Equation 3 was used for diagonal neighbours. 

𝑎, =	
(-./0"$-./0!)

1
                                                                       (2) 

 
𝑏, =	√2 ∗	

(-./0"$-./0!)
1

                                                             (3) 
When multiple parameters should be considered, different cost surfaces can be amalgamated into a 

merged cost surface. For a single cost surface or a merged cost surface, an accumulative cost surface 
and a backlink raster are calculated based on the cost surfaces. Therefore, in most implementations of 
cost distance analysis, Dijkstra’s shortest path algorithm is used [19]. We used a well-established 
modification of this algorithm [14] to calculate the cost from each cell to the next source cell with the 
least cost, resulting in an accumulative cost surface and a backlink raster. The cells of a backlink raster 
contain coded direction values linked to the next cell on the least cost path to the source cell. The cells 
of an accumulative cost surface contain the actual cost of the path to the source cell. The backlink raster 
can then be used to track the least cost path from any cell to the next source cell with the least cost [20]. 
Fig. 5 shows a simplified illustration of a cost distance analysis with equally weighted cost surfaces. 
 
 
3. METHODOLOGY 

 
Our aim was to utilise cost distance to consider remote sensing data to calculate reasonable snapping 

points rather than to merely utilise perpendicular distance or relations between buildings and streets. 
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Fig. 4. Different neighbourhood types in gridded data representation: A) Rooks pattern - 4 linked neighbours for 

each cell. B) Queens pattern - 8 linked neighbours for each cell. C) Knights pattern - 16 linked neighbours 
for each cell [14] 

 
Fig. 5. A) Generation of a merged cost surface with equally weighted cost surfaces. B) Generation of the 

accumulative cost surface using the Queens pattern and Equation 2 and Equation 3. In each cell, the least 
costs to the next source cell are stored 

 
We performed a cost distance analysis with cost surfaces of vegetation, slope, and building footprints. 

Therefore, we used multispectral images to determine the vegetation cover of cells based on the 
vegetation index normalised digital vegetation index (NDVI), LiDAR data when modelling the slope 
for each cell, thereby building footprints from OpenStreetMap to identify building cells and the road 
network from OpenStreetMap. We used thresholds for vegetation and slope to distinguish cells with no-
vegetation from those with vegetation, as well as cells with passable slopes from those with not-passable 
slopes (cf. subsection 3.3). 

The road network was then transformed to the source raster, where cells represent the existence of 
road segments, also referred to as source cells. To avoid unnecessary computation complexity due to a 
high number of source cells, we generated a source cell only every three metres along the road network, 
which we still consider as sufficiently accurate. Based on the building footprints, a binary raster with 
cells representing the existence or absence of buildings was created. The centroids of these building 
footprints will be called destination cells. Then, a merged cost surface was generated by merging and 
weighting the cost surfaces of vegetation, slope, and building footprints. Further, the accumulative cost 
surface and the backlink raster were calculated, with each cell in the accumulative cost surface 
representing the costs from the cell of interest to the source cell that can be reached with the least cost 
using the merged cost surface. The complete set of least cost paths between destination and source cells 
could then be generated using the coded direction values in the backlink raster. The last point of the 
least cost path described the source cell and, thus, the snapping point for the corresponding destination 
cell on the road network. 
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We evaluated our results by comparing the snapping points calculated using cost distance with the 
snapping points calculated using the conventional routing machine [21], which uses perpendicular 
distance. Therefore, we applied a so-called ideal snapping area, which represents the area where 
snapping points are considered correct. This area is based on manually set geographical points, which 
were used as ground truth data. For the considered area of interest (AOI), we set 495 ideal snapping 
points. We also evaluated the weighting of the classes (vegetation, slope, and building footprints). Only 
the odd numbers from 1 to 9 were used as weights for each class to reduce the time needed to perform 
calculations. 

The number of total weight combinations was calculated according to Equation 4: 
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠234560475 = 𝑛8 ,                                                         (4) 

where n is the number of possible weights (1,3,5,7,9), and k is the number of classes (vegetation, slope, 
and building footprints). Accordingly, we still had 125 different weighting combinations in total, 
meaning that we had 125 iterations of a complete cost distance analysis. As a result, we had obtained 
validation rates describing the percentage of snapping points within the ideal snapping area for each 
weight combination. This enabled a detailed analysis of a reasonable weighting and a comparison 
between the calculated snapping points based on cost distance and the snapping points determined by 
an OSRM. 

 
3.1. Area of interest 

 
Our area of interest (AOI) is located in the town of Höxter. Höxter is a medium-sized town in the 

southwest part of North Rhine-Westphalia (NRW) in Germany, which extends over an area of 158.16 
km² and has a population of 29,112 [22]. The considered AOI is square-shaped, 1 km² in size, and 
located at the centre of Höxter. Most of the landcover of the AOI is residential areas, but there are some 
industrial complexes in the centre, north-west, and east areas of the AOI. The coordinates confining the 
geographical extent of the AOI are shown in Fig. 6. 

 

 
 

Fig. 6. Geographical extent of the AOI in Höxter with coordinates (EPSG:4326) 
 
3.2. Data 

 
We derived the road network and the building footprints from [23]. The aerial imagery and the 

LiDAR data can be obtained from the OpenGeoData project [24] for NRW. We filtered the road network 
data, resulting in a road network comprising only publicly accessible roads. Aerial imagery is a 
multispectral image containing red and near-infrared (NIR) wavelengths. Hence, the NDVI can easily 
be calculated using the following equation: 

𝑁𝐷𝑉𝐼 = 	9:;<;3=
9:;$;3=

                                                                  (5) 
The point cloud from the LiDAR data was used to generate a grid, each cell of which represents the 

slope value of the terrain. For each data point, a grid representation was generated with a cell size of 0.2 
x 0.2 metres. Thus, the cells of the cost surfaces overlap exactly, and cells from different cost surfaces 
refer to the same position in the AOI. 

 
3.3. Generation of snapping points by cost distance 

 

We determined the thresholds for the classes of vegetation and slope on an empiric basis. The results 
are shown in Tab. 1. 
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Table 1 
Classes and related weights for the cost surfaces 

 
Class Derived from Threshold 

vegetation NDVI grid > 0.2 
no-vegetation NDVI grid <= 0.2 

passable Slope grid <= 11 
not-passable Slope grid > 11 

 
A conservative threshold for no-vegetation cells is used with an NDVI of 0.2, and a threshold of a slope 

of 11 was chosen for not-passable cells. The threshold for not-passable cells depends on the resolution of 
the given cost surfaces. As for neighbourhood type, the Queens pattern was used (cf. Fig. 4). 

 
3.4. Evaluation of snapping points 

 
The ideal snapping point for a building was predetermined as the point on the road network that is 

most likely accessible from the building. If a building had more than one possible access point from the 
road network, multiple ideal snapping points were set. A line from each building’s centroid to its ideal 
snapping point on the road network was generated, ensuring a spatial relation between the two points 
and meaning that no additional relation is required. Since we were not able to find entities providing 
pick-up and drop-off locations from passenger transport services as ground truth data, we manually set 
495 reference points as ground truth data. The first vertex of the line represents the building’s centroid, 
and the second vertex represents the ideal snapping point. This line and its second vertex can be 
compared to lines from the building’s centroid to calculated snapping points by cost distance and to the 
snapping points obtained from OSRM.  

Considering the maximum acceptable distance from the ideal snapping point to calculated snapping 
points results in a circular area around the ideal snapping point. In the first validation step, we checked 
whether the calculated snapping point was located inside this area. However, if the distance between the 
building and the road is short, a calculated snapping point might be validated even if the ideal snapping 
point is in another direction from the building’s centroid position. We also considered the direction in 
the next validation step by comparing the difference in bearings between the two lines from the 
building’s centroid to the ideal snapping point and to the calculated snapping point. Thus, a maximum 
acceptable degree for the angle between these two lines was used as a threshold. This led to an area 
around the ideal snapping point that is called the ideal snapping area (Fig. 7). 

Consequently, a calculated snapping point was validated only if the difference between the calculated 
and manually set ideal snapping point regarding distance and direction was below the predefined 
thresholds. As the distance between the points and the same maximum acceptable difference in bearings 
grows, the size of the ideal snapping area increases until the area is defined only by the radius of the 
circle based on the maximum allowable distance. During evaluations, the maximum acceptable distance 
between the points was set to 25 metres, and the maximum difference in bearings between the line from 
the building’s centroid to the calculated snapping point and the ideal snapping point was set to 70°. 

 
 

4. RESULTS AND DISCUSSION 
 

In the AOI, 403 out of 495 calculated snapping points obtained according to perpendicular distance 
using the nearest API from OSRM are inside the ideal snapping area, which translates to a validation 
rate of 81.4%. 

The calculated snapping points by cost distance result in different validation rates depending on the 
weight of each class. Thus, the validation rate varies from 84.8% to 90.3%. 
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Fig. 7. Concept of the ideal snapping area. The ideal snapping area is defined by a vector (yellow line) from the 

centroid of building B to the ideal snapping point (yellow point), a maximum distance (defined by r), and 
a direction t (defined by the maximum allowed difference in bearings). In this example, the allowable 
difference in bearings β between θ1 and θ2 is 15°. The ideal snapping area is shown in green. An ideal 
snapping area restricted only by r could lead to acceptable snapping points on Road A and Road B if r is 
sufficiently large 

 
A detailed analysis of the weighting and the validation rate allows the weighting of each parameter 

to be scored. Fig. 8 shows the enhancement of the validation rate compared to the validation rate without 
weighting parameters for each weight combination. A trend can be seen – specifically, the higher the 
cost of the parameter slope, the higher the validation rate. Meanwhile, the lower the cost of the parameter 
slope, the lower the validation rate. For the parameters of vegetation and building footprints, no such 
trend can clearly be identified. However, the highest validation rates were achieved with a medium cost 
of vegetation and building footprints. 

Fig. 8 depicts the distribution of the validation rates. All validation rates of our cost distance approach 
are higher than the validation rates based on perpendicular distance, with the highest validation rates 
being achieved most frequently. 

We performed an additional cost distance analysis for a small extract of the AOI where the building 
in Fig. 2 is located with more weight combinations. Fig. 10 shows the impact of weighting on the quality 
of the least cost path. The most reasonable least cost path (blue) is achieved with a weighting 
combination of 5 (vegetation), 7 (slope), and 3 (building footprints), whereas other weighting 
combinations did not reflect the actual access to the building. 

It has been shown that the cost distance analysis outperforms the perpendicular distance approach in 
the AOI. However, the presented approach by cost distance still has to be tested in other regions and on 
a larger scale to draw a generalised conclusion. Further investigations are difficult to perform due to the 
lack of access to sufficiently high-resolution open-source data. When such data are available, the 
presented approach should be tested and investigated in other regions with different terrains 
(e.g. mountainous, flat, urban, and rural areas). Since weighting has a substantial impact on the quality 
of the least cost paths, the proportion of vegetation, the geomorphology, and the buildings in a selected 
AOI influence the optimal combination of weights; hence, the optimal weighting depends on the AOI. 
Unlike satellite imagery, cloud cover is hardly an issue in the aerial imagery used, as these images are 
taken irregularly by aircraft during good weather conditions. As a result, not much data is available. The 
time of capture of such aerial images (season) may also play a role, as the condition of vegetation varies 
across seasons. Consequently, the quality of the results may be affected when aerial images are used in 
winter. If further sufficient data become available, we recommend investigating this assumption in more 
detail in the future, for example, by comparing aerial imagery from summer and winter. 
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Fig. 8. Effect of weights on the validation rate 

 
Fig. 9. A histogram of the validation rates for calculated snapping points based on perpendicular distance and  
           cost distance 
 

Due to the high computational complexity of cost distance analysis, we recommend neglecting the 
accuracy of the parameters to a certain degree. In particular, reducing the number of source cells can 
notably improve the calculation time. At the same time, a density of the source cells on the road network 
with a spacing of three to five metres can provide adequately accurate results. Coarsening the grid 
resolution would also improve the calculation time. However, at a resolution of 0.3 x 0.3 metres, objects 
like fences or other obstacles could not be considered sufficient. Regarding this problem, Shannon, 
Whittaker and Nyquist state that the cell size of the grid should be at least 2*√2 times smaller than the 
smallest detail to be kept [25; 26]. Hence, a sufficiently high resolution is required for small objects, but 
the resolution of the source cells and, thus, the accuracy of the snapping points can be reduced to improve 
performance. Alternatively, the object-based image classification method can be used when working 
with lower resolutions in point cloud data, similar to the detection and filtering of vehicles and trees 
using LiDAR or aerial imagery [27; 28]. Nevertheless, if the duration of the preprocessing stage is not 
relevant, our approach could be used in the future (e.g., in passenger transportation with door-to-door 
services to precompute optimised pick-up and drop-off locations for any address within a certain area). 
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Fig. 10. The influence of weighting using the example from Fig. 2. Weighting with a cost of 5 (vegetation), 7 
(slope), and 3 (building footprints) results in the least cost path (blue), which reflects the most realistic 
access to the building, whereas the other shown weighting combinations do not lead to realistic results 

 
Performing a cost distance analysis on grids results in least cost paths that tend to zig-zag and are 

longer than the direct paths in reality. This can be enhanced by using larger neighbourhoods for each 
cell (cf. Fig. 4) or using the approach presented in [17; 29]. However, in this study, only the point-to-
point relation is important, and the geometry of the path is not relevant for the snapping point. 

Obviously, transportation data is required to obtain a sufficient number of realistic stop locations of 
vehicles using buildings’ addresses as reference data to perform a more detailed evaluation. However, 
such data is hard to obtain due to privacy issues. 

The approach that we have presented could be used in the future to increase the accuracy of stop 
locations for door-to-door transport services. This can be useful for transportation network companies 
that offer such services, especially in combination with public transport or multimodal transportation. 
Time delays that are caused by finding a reasonable stop location can interfere with the plans of future 
trips and time schedules. This could be prevented by applying pre-calculated optimised stop locations. 
 
 
5. CONCLUSION AND OUTLOOK 

 
We have shown that classical road snapping techniques based on perpendicular distance have some 

weaknesses. The cost distance approach using a weighted grid presented here outperforms the road 
snapping by perpendicular distance in the AOI. 

The given conditions of the AOI (vegetation cover, the slope of the terrain, and the structure of the 
settlement) notably impact the cost distance analysis and the optimal weight combination. 

Applying higher-resolution remote sensing data could increase the accuracy of the classification 
process and, consequently, the least cost paths and snapping points. However, this would also further 
increase the already high computation time of this process. 
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The cost distance approach presented in this study provides more reasonable snapping points than 
the snapping points derived by perpendicular distance, as evidenced by the higher validation rate (up to 
90.3% vs 81.4%). The highest validation rates are achieved most frequently, indicating the reliability of 
the proposed approach. 

We have demonstrated the basic idea and the possible potential of the cost distance approach for 
optimizing pick-up and drop-off locations in transport routing and encourage further research in this 
field. Such research could improve the quality and accuracy of road snapping in real-world applications. 
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