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INVESTIGATION OF DYNAMIC PROCESSES IN A GEARBOX WITH 
DEFECTS 

 
Summary. The article presents theoretical research of a transmission system that allows 

examination of the dynamic processes evaluating different sizes of defects in gear tooth 
(0%, 20%, 50%, 80% of teeth width) and gaps between the connection of the gear teeth. 
The dynamics of the transmission is described using the finite element method and discreet 
elements. This paper presents and analyzes the results of mathematical experiments on this 
system. 

 
 

1. INTRODUCTION 
 

A gearbox is widely used as one of the main transmission elements in industrial and military 
applications to transmit power. Gear or gear teeth surfaces in particular excessively wear because of the 
difficult shape of the geometry caused by intense loads in transmission systems. The contact area of two 
connecting gear teeth is variable, causing defects in gear teeth. Defects, such as gear tooth cracks, 
fractures, and chipping, increase vibration levels and generate noise simultaneously as the gearbox 
continues to work. Early fault detection might be crucial to stop incoming systems failure.  
At present, increasingly more investments are being made in the field of diagnostics. Many scientists 
perform mathematical modeling of defects to understand their impact on system dynamic characteristics. 
For example, Mohammed et al. [1] studied the gear system using three different dynamic models from 
6 to 12 degrees of freedom (DOF) evaluating different crack sizes and pinion’s displacements. The 
results of the first model show visible differences from other models that were made more realistic, 
including simulation of motor and load. From the second model, the influence of the friction on inter 
tooth could be seen. Jia et al. [2] for the object took 26 DOF transmission system which includes three 
shafts and two connected spur gears. This model is developed by calculating torsional stiffness and tooth 
load adding spalling and crack damage. For simulation, Matlab Simulink software tool was used. Patrick 
et al [3] focused on the identification of cracks in a planetary gear system using vibration sensors. 
Mathematical model results are compared with experiments from the results obtained from a helicopter. 
Using the same vibration signal modeling, Liang et al. [4] identified the exact gear tooth crack location. 
The presented results can help identify defects and it can be used as a tool for planetary gear system 
diagnostics. Group of researchers, Ma et al. [5] conducted a dynamic investigation of cracked gear 
systems. The whole research focused on 3 major important factors: crack propagation prediction, mesh 
stiffness calculation, and vibration response calculation. For the object they took three different gears. 
Tian et al. [6] carried out a model-based gear dynamic analysis and simulation research evaluating 
cracks’ propagation level. The results suggested that the root mean square is a better statistical indicator 
than the Kurtosis indicator to reflect the crack propagation in the early stages. 

Finite element modeling (FEM) is one of the methods to simulate gears with defects dynamic 
behavior; however, these models have large amount of DOF. Therefore, it becomes quite difficult to 
proceed with the modeling. Nevertheless, Parker et al. [7] proposed a nonlinear tooth contact and mesh 
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stiffness variation model using FEM. Pruerter et al. [8], with the same gear teeth contact model, 
indicated that uneven loading on the teeth was because of differing constraints on the two sides of the 
teeth compared to the experimental results. Lin et al. [9] studied 3D dynamic contact problems. 
According to the results, mesh stiffness results were the same as those obtained from the conventional 
methods. Secondly, the case of initial speed impact is considered; the contact time is independent of the 
initial speed. Third, the impact time depends on the geometric parameters of the gear drive and the total 
contact force is proportional to the initial speed and transmission load. 
To insure lifetime of the gear, stiffness calculation is one of the key parameters that is being studied by 
the scientists. Xue et al. [10] presented work on torsional stiffness evaluation in involute spur planetary 
gears in mesh using FEM. The theoretical gear contact position was determined using an ANSYS APDL 
software. Walha et al. [11] investigated the dynamics of a two-stage gear system involving backlash and 
time-dependent mesh stiffness. To satisfy some conditions, nonlinear dynamic systems were linearized 
to a linear dynamic system and each system was solved using Newmark iterative algorithms. A hypoid 
gear pair was taken as an object in the research carried out by Wang et al. [12]. Nonlinear mesh stiffness 
results showed that the increase in the mean mesh stiffness ratio tends to worsen the dynamic response 
amplitude and stiffness parameters have an impact on dynamic responses. Saxena et al. [13], in the mesh 
stiffness model, included sliding friction and spalling defects. 

In this paper, dynamic teeth coupling investigation with mesh and contact stiffness defects in a 
gearbox system is presented. Teeth of each gear are self-contained and may have defects. The 
deformation of each tooth is evaluated. The size of gear tooth’s stiffness defect is presented and 
expressed as a percentage (0, 20, 50, and 80 %). Transmission with an idle with no external excitation 
reveals the presence of gaps between contacting two gear teeth 50 . The torsional vibrations of shafts 
and bending vibrations of gear teeth are simulated using finite and discrete elements methods. 
 
 
2. MATHEMATICAL MODEL OF TRANSMISSION SYSTEMS 

 
A mathematical model of a transmission system is considered (Fig 1.). The transmission system 

includes an asynchronous electrical motor, a gearbox, and connection shafts. The main parameter of  the 
electric motor is the moment of inertia , rotation angle , and torque . The gearbox includes 
two connected gear pairs, where is the evaluated moment of inertia , , , , rotational angles 

, , , , and gear Pitch radius , , , . For torsional rotation, only gear tooth mass is 
evaluated. The transmission system is unloaded (torque of resistance is equal zero, ). 

To evaluate the rotation of the transmission elements, a mathematical model suggested by Aladjev 
[14] may be used: 

 (1) 

where  is the rotation moment of the asynchronous electric motor; ,  are 

the parameters of the electric motor;  is an angular velocity of idle running;  is an angular velocity 
of the electric motor,  and  - glide and torque,  - angular velocity of the motor,  - ideal 
angular velocity of the asynchronous motor. 
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Fig. 1. Dynamic model of the transmission system 
 

The system of equations of a rotating shaft has been considered applying the finite element method: 
 

  , (2) 

where , , and  are the mass, damping, and stiffness matrix, respectively; , , 

and  are the vectors of acceleration, velocity, and displacement, respectively; and  is the 
vector of torques. 

Rotational angle  in the finite element is equal to: 
 (3) 
, (4) 

where  is the vector of angles;  is a matrix of shape functions; and  is a local 

coordinate. 
Mass, stiffness, and damping matrices of the finite element of the transmission system are equal to: 

, (5) 

, (6) 

  , 
 

(7) 

where  is the shaft material density;   is the polar moment of inertia,  is the shear module; and 

 and  are optional coefficients by Aladjev [14]. 
To evaluate the interaction of possible cracks on tooth’s surface mesh stiffness, it is important to 

determine the size of the defect. In this model, index k indicates gear or index i - gear tooth. 
The bending stiffness with a defect of the k-th gear and the i-th tooth is described by the formula: 

  ,  (8) 
where  is the size of the defect , 
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; (9) 

where is the defect depth and is the tooth thickness,  are the moduli of elasticity of the tooth 
without and with a defect 

is the stiffness coefficient of the i-th tooth without a defect. 

 

 

 
 

Fig. 2. Two connected gears dynamic model 
 

The contact force by Hertzs theory between i tooth k gear and j tooth l gear is equal to: 

, 

(10) 

where , is the stiffness and the dumping coefficient between contact; n is the nonlinear power 

exponent determined from material and geometric properties; and is penetration, 

, where:  and are the displacement vectors,  is the gap between two 

connected gear teeth, is the restitution coefficient, and  is the Heaviside function. 
The potential energy of k-th gear i-th tooth and l-th gear j-th tooth is equal to: 

; (11) 
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where , and ,  are base radii and rotation angles of the k-th and l-th gears, respectively, and 

and  are the stiffness coefficients of the k-th and l-th gears, respectively. 
The dissipation functions of k-th gear i-th tooth and l-th gear j-th tooth are equal to:  

; (13) 

, (14) 

where and  are the damping coefficients.  
The equations of rotation k-th gear and motion of i-th tooth area described below: 

 (15) 

, (16) 
and l-th gear and  j-th tooth are equal to:  

 (17) 

, (18) 
where ,   are inertia moments; ,  are k-th and l-th gear torques; ,  are mases 
of  k-th gear i-th tooth and l-th gear j-th tooth, respectively; nzk and nzl are the numbers of gear teeth; 

 is the parameter that takes into account the coupling of the k-th gear i-th tooth and the l-th gear 

j-th tooth , and . In the annex A, the derivation of the stiffness 

coefficient of gear is presented. 
 
 
3. RESULTS AND DISCUSSION 
 
3.1. Initial data of the research 
 

The purpose of this research is to determine the dynamic characteristics (velocity, acceleration, 
torque) because of the effect of different sizes of the defect 20 %, 50 % and 80 % of whole width on 
tooth surface with 50  gap between gear teeths. 
Initial conditions of the variables: initially, the torque of the asynchronous electro motor, vectors of 

rotation angles, and angular velocity are equal ( , 

). The number of first and third gears is equal, ; the 

number of second and fourth gears is equal, . The integration time step is  and 
the simulation time is 5 s. The data of the transmission system are shown in Tab 1. 
 
3.2. Results and discussion of the transmission system 
 

The dynamical characteristics of the transmission system may alter due to defects in gear tooth. The 
developed model of transmission with teeth defects allows a detailed analysis of the dynamic 
characteristics of a transmission system. The gap between two connected gears is 50 . 
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Dependencies in time of asynchronous electric motor torque and angular velocity of gear1 and gear 2 
are shown in Fig. 4 when the defect size is 80%. With such defects, clearance, and idle rotation, 
pulsations of the torque of the electric motor appear . 

Table 1 
Data calculation of the transmission system 

 
Definition Notation Definition Notation 

Base radius of the gear 

=  

Mass of inertia 

 

=   

=   

=   

Poisson’s ratio  Young’s modulus  

Gear tooth mass  Stiffness coefficient of 
teeth 

 

Shaft shear modulus of 
rigidity  Damping coefficient of 

teeth 
 

Shaft density  Shaft diameter  

Shaft parameter 1  Shaft parameter 2  

Restitution coefficient  Grade indicator  

 
a) 

 

b) 

 
c) 

 

d) 

 
Fig. 3. Asynchronous electro motor torque and angular velocity of gear 1 and gear 2 dependencies in time:  

a) torque; b) Asynchronous electro motor torque derivation in time; c) angular velocity of gear 1; and  
d) angular velocity of gear 2 
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Fig. 3 shows the transmission process that remains at 0.5 s. Gear 1 angular velocity reaches 314 rad/s 
and gear 2 angular velocity reaches 376 rad/s. Dependencies in time of Angular acceleration of gear 1 
damaged tooth 1 with different sizes of the defect are shown in Fig. 4. 

a) 

 
b) 

 

c) 

 
Fig. 4. Acceleration of gear 1, tooth 1 with different sizes of defect dependencies in time: a) 0%, ;  

b) 20% ; c) 50%  
 

Fig. 4 shows that acceleration changes due to an increase in the size of the defect. In the graphic, 
when there are no defects in the gear tooth system, the maximum value of the acceleration reaches 0,95 

. On changing the defect size to 20% and 50%, acceleration increases to 1,05 and 2,85 

. 
When there are gaps between the teeth 50  and the various defects of the first tooth of the first 

gear wheel, torsional vibrations of the shafts and bending vibrations of the teeth are generated in the 
transmission. Fig. 4 shows that complex torsional vibrations occur in the transmission. 

When simulating the operation of the transmission for 5s at idle rotation, the transmission does not 
have torsional vibrations of the elements. Therefore, it can be argued that when an alternating rotating 
moment of resistance is applied in the transmission, the torsional vibrations of the transmission of the 
elements will be more complex. 

Angular acceleration of four gears dependency on frequency is shown in Fig. 5 when the size of the 
defect is 50%. 

The four graphs in Fig. 5 show that when a defect occurs, the resonant frequency at the first gear is 
visible. First gear vibration by coupling is transferred to the second gear, but decreases at the third gear, 
which connected to the second one by the shaft and completely disappears with in fourth gear. This 
analysis makes it possible to determine which gear has the defect, but it does not allow us to determine 
which gear tooth is damaged. This is done by another spectrum analysis of the gear teeth with different 
defect sizes and this is shown in Fig 6. 

According to Fig. 6, because of the effect of different defect sizes, the rotational frequency decreases 
with the maximum amplitude value. Tooth without defect , maximum amplitude value is 220 

 at 20000Hz frequency, when 20%  value is 190 at 19 000Hz frequency, at 

1,1( 0)D =

1,1( 0,2)D = 1,1( 0,5)D =

2/m s 2/m s
2/m s

1,1( 0)D =
2/rad s 1,1( 0,2)D = 2/rad s



12                                                                                 P. Bogdevičius, M. Bogdevičius, O. Prentkovskis 
 
50%  is 460 18000Hz frequency and at 80%  maximum amplitude value 

88 at 8500Hz frequency. 
 

a) 

 

b) 

 
c) 

 

d) 

 
Fig. 5. Angular acceleration dependency of frequency of four gears: a) gear 1; b) gear 2; c) gear 3; and d) gear 4 
 

a) 

 

b) 

 

c) 

 

d) 

 
Fig. 6. Gear 1, tooth 1 acceleration dependency of frequency with the different sizes of the defect:  

a) 0% ; b) 20% ; c) 50% ; d) 80%  
 

1,1( 0,5)D = 2/rad s 1,1( 0,8)D =
2/rad s

1,1( 0)D = 1,1( 0,2)D = 1,1( 0,5)D = 1,1( 0,8)D =
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4. CONCLUSION 
 

A mathematical model of transmission system is established that allows the analysis of dynamic 
processes evaluating different sizes of defects on gear tooth (0%, 20%, 50%, and 80% of tooth) and 
gaps between connections of the gear teeth 50 . The resonance frequency changes to a 
different size of defect. The bigger the size of the defect, the smaller the stiffness, and the resonance 
frequency decreases. Within 50% of the defect of tooth, gear 1 angular velocity reaches 314 rad/s and 
gear 2 angular velocity reaches 376 rad/s. 

In a system without defects of the first tooth on gear 1 , the maximum acceleration value of 
the first tooth reaches 0,95 m/s2,  when the defect size is  20% , acceleration of 1 tooth 
increases to 1,05 m/s2, and  when the defect size is 50% , acceleration reaches 2,85 m/s2. 

To study the torsional vibrations of the transmission of elements and bending vibrations of the teeth 
of gear wheels with defects and gaps, the developed software has been developed. 
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Annex A 
 
The fundamental equation for structural analysis, based on the Euler beam theory, is presented where 
one point is fixed; the force–load behavior can be described by: 

, 

where  is the stiffness matric;  is the displacement vector , and  is 
the aggregated force vector. 

. 

When the first point of the beam is fixed  the equation lightens: 

. 

Then 
 

 

 

 
. 

Fig. 7 shows a simplified model of a localized gear tooth of irregular shape evaluating an involute  
          curve. 

 
Fig. 7. Cutting contour of gear tooth 

 
The mesh stiffness of the gear tooth is equal to: 

, , 

where  is the modulus elasticity of defected gear tooth;   and are shape functions of the beam 

element, is the y coordinate, is the height of the tooth; and A is the cross section area of the tooth 
that depends on the y coordinate.  The coordinate of the cross section of the tooth is approximated 
by 3 points 

, 

where  is the i-th shape function. The shape functions  are equal to: 
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, , . 
Then, the cross-section area of tooth A is equal to: 

, 
 are the cross section areas of a tooth at the point , , , respectively. 

Then 

, . 
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