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USING PONTRYAGIN MAXIMUM PRINCIPLE FOR PARAMETRICAL 
IDENTIFICATION OF SHIP MANEUVERING MATHEMATICAL MODEL 
 

Summary. This article proposes usage of Pontryagin maximum principle for 
parametrical identification of mathematical vessel’s model. Proposed method has a 
special perspective for identification in real time mode, when the parameters identified 
can be used for forecasting of coming maneuvers. 

 
 
 

ИСПОЛЬЗОВАНИЕ ПРИНЦИПА МАКСИМУМА ПОНТРЯГИНА ДЛЯ 
ПАРАМЕТРИЧЕСКОЙ ИДЕНТИФИКАЦИИ МАТЕМАТИЧЕСКОЙ МОДЕЛИ 
СУДНА 

 
Аннотация. В статье предложено использование принципа максимума академика 
Л.С. Понтрягина для параметрической идентификации математической модели 
судна. Предложенный способ особенно эффективен при идентификации в 
реальном масштабе времени, когда идентифицированные параметры могут  
использоваться для  прогнозирования ближайших маневров. 

 
 

There are no disputes about the importance of creation of an adequate mathematical model of a 
certain vessel. When the model is chosen in some way based on the theory of hydrodynamics, the 
problem of defining parameters – models coefficients appears. At this stage the priority is given not to 
theoretical calculation of model’s parameters, but to their defining based on vessel field tests.  This 
idea has a special perspective for identification in real time mode, when the parameters identified can 
be used for forecasting of coming maneuvers. 

This process and its result is parametrical identification, as the structure of the model is chosen. In 
most cases mathematical vessel’s model is a system of differential equations of vessel movements, and 
the parameters are coefficients in the right part of the equations. Usually the coefficients are linear in 
the right parts, but more complicated cases of parameters inclusion are possible. 

The task of parametrical identification is usually formulated as a task of minimisation of some 
functional in an integral form. If the set of object state variables is given by vector { }ixX = , the set of 

model parameters by vector { }kСC = , so the condition of functional minimum is as follows: 
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Where: D – is some closed area of C model parameters vector variation, and functional under integral 
in the common case depends both on conditional vector Х, and on its first dtdX /  and second 
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22 / dtXd  derivatives, here kinematic parameters (V, β, ω) are considered in ship based 
coordinate system while coordinates of the ship’s centre of gravity and her course (X, Y, K) 
are considered in Earth fixed coordinate system. 

Making this function more concrete depends first of all on our ability of monitoring the object, i.e. 
what state variables we are able to measure. In a perfect case monitoring the vessel’s movement we 
would like to measure 6 variables – three linear accelerations { }321 ,, wwwW =  and three angular 

accelerations { }321 ,, εεε=E , where coordinates axes { }ZYX ,,  are chosen for a vessel classically.  
Monitoring these figures, we could regularly define both kinematic characteristics of six-dimensional 
movements – linear speed )V,V,V( 321=V  and angular speed { }321 ,, ωωω=Ω  and linear and 

angular { }321 ,, ψψψ=Ψ  movements, and through them also dynamic characteristics – forces 

{ }321 ,, RRRR =  and moments { }321 ,, MMMM = , affecting a vessel. The most important thing is 
that all these characteristics are defined by integration of accelerations (rather than differentiation of 
coordinates!). That greatly increases the accuracy of final results. 

But such approach is still at the level of ideas, as installation of six-dimensional accelerometers and 
appropriate processing devices on an ordinary vessel is a rather vague problem. That is why, instead of 
general problem (1) particular problems of this type are solved, depending on what movement 
characteristics we can measure directly. For example, if movement speed (lag), coordinates (GPS) and 
course (gyrocompass) are measured, functional (1) may be written in the following way: 
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where εεεε KVYX ,,,  – are figures of these current kinematic characteristics of the ship in the 
process of movement, 

KVYX ,,,  – their figures, defined according to the chosen mathematic model and depending on 

parameters vectorС , 
{ },,,, 4321 αααα=A  – weight norm ( )∑ =1kα  vector, the components of which shows us 

the importance of each one of the kinematic parameter. 
But in most cases the problem (2) is taken down to the problem of so-called “differential” 

identification, i.e. integral minimization, conjugated with the differential equations of vessel’s 
movements. Two-dimensional motion of our ship is described by system of six differential equations:  

),,,(/ CVfdtdV V ωβ=   ),,,(/ CVfdtdK K ωβ=  
),,,(/ CVfdtd ωββ β=   ),,,(/ CVfdtdX X ωβ=  
),,,(/ CVfdtd ωβω ω=   ),,,(/ CVfdtdY Y ωβ=                      (3) 

 In this case we chose the following functional for minimization 
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where V, β, ω – are important for us parameters. 
The problem (4) can be easily presented in a discreet form, replacing the integral by its discreet 

analogue – by the sum of function under integral in points tk – time moments of measuring of 
kinematic parameters of movement εεε ωβ kkkV ,, . After that the task is solved by a traditional OLS 
(Ordinary Least Squares) method: particular derivatives of the minimized function for the searched 
parameters are taken as equal to zero. Then we get so called system of normal algebraic equations 
according to the number of defined parameters:  

       0/ =∂Φ∂ Cj , mj …… ,2,1=                       (5) 
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If the parameters were linear in the model, so the normal system we get is also linear, and from the 
formal point of view can be easily solved. 

But despite this problem being seemingly easy to solve, set like this the implementation of solution 
results in a whole cluster of problems. Nonobservancy, i.e. impossibility to measure a part of 
kinematic characteristics, such as β , dtd /ω , dtdV /  leads to the necessity to calculate them by 
differentiation in this or that way. It greatly decreases the accuracy of final results. Besides the matrix 
of linear problem of type (5) are badly conditioned, and even small deviations of primary data (and in 
our case they are not small at all!) leads to great deviations of final results in defining Cj parameters. 
So, these two factors, - low accuracy of primary information and bad matrix conditioning of system 
(5) make the problem practically incorrect, the result of its solution is dangerous to trust. That is why 
we would like to get back to problem (2) and look for other approaches for its solution. 

Here it is logical to use the Pontryagin maximum principle [1], designed for this kind of tasks. 
Let’s formulate it for our problem. Object’s movement is defined by a system of differential equations 
(3) when choosing coefficients jC  out of a certain closed area D. We should minimize functional (2), 

where object ft  monitoring time is given. According to the maximum principle this task is equivalent 
to the following task. Let’s consider Hamiltonian (Hamiltonian function) for our problem. 

yyxxKKvvO fpfpfpfpfpfpfH ×+×+×+×+×+×+−= ωωββ  ,   (6) 

Here we have new movement characteristics – variables yxKv pppppp ,,,,, ωβ  conjugated with 
certain kinematic parameters of the main equations system, shown by the bottom line indexes. Such 
variables are described by a system of differential equations, conjugated with the equations of system 
(3): 

vH
dt
dpv ∂−∂= / ; ββ ∂−∂= /H

dt
dp

, ωω ∂−∂= /H
dt
dp , 

KH
dt
dpK ∂−∂= / ; XH

dt
dpx ∂−∂= / , YH

dt
dpy ∂−∂= / ;                                (7) 

 
Marginal conditions for main and conjugated variables should be discussed separately in every 

concrete case. The Pontryagin maximum principle states that the minimum of primary functional is 
equal to the maximum of Hamiltonian H at any moment t, and its maximal value at the moment ftt =  
is equal to zero: 

                                                          0)( =ftH  ,                                           (8) 
So the task of searching for a minimum is equal to the steering problem: selecting coefficients for 

Cj model, i.e. steering the model (not the object!) with the help of vector С, we reach the maximum of 
Hamiltonian Н. 

It is easy to see, that if the parameters of model are included in it in a linear way, so the 
Hamiltonian is dependent on them in a linear way. So it’s maximum value will actually be the biggest 
in D-field, as the linear parameter function does not have local maximums inside the field. 

The maximum value is reached at the margin of the closed area of possible “controls” for vector С, 
where hyperplane ConstCH =)(  either touches the margin of D-field, or some other contact point of 
hyperplane with a part of the margin. 

Particular derivatives jCH ∂∂ /  are not turning into zero, as it would be at the internal maximum 

point Н, they define normal vector cosines direction to hyperplane ConstCH =)( . Controlling the 
model, you should move the plane to the normal by increasing H value until it touches the margin of 
D-field or coincides with a part of it. 

What do we usually know about the D-field of permissible values of the model, i.e. the field of 
permissible model controls from our point of view? Usually hydrodynamic parameters of a model are 
defined by complicated equations complexes, and even with the similar model structures a greater 
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amount of formulas [3-11] is suggested for jC  assessment. It is the assessment that presumes not 

precise definition of jC , but indication of some interval of its possible variation. If the intervals are 
independent from each other, D-field of permissible values of parameters is a usual 
hyperparallelepiped in m-dimensional space C. 

Our hyperplane ConstCH =)(  has a general position, i.e. it is not parallel to any of the faces or 

edges of the parallelepiped. Really, parallelity of a face where constCj =
*  would mean 

that 0/ * =∂∂ jCH , and it is possible only if *
jC is not a part of Hamiltonian Н(С). But it is impossible, 

as any parameter of *
jC is present in the right part of at least one of differential equations (3). This 

statement is even more also true for the edges of parallelepiped, where two adjacent faces cross. 
It means that, optimal for our controls would be the value of vector С, according to the vertex of 

parallelepiped, where hyperplane touches D-field. For the general plane such vertex always exists and 
at every moment it is singular, that proves the existence and singularity of solving the set problem. It 
also proves relay character of the solution as optimal equation – with a certain change of model 
functioning conditions (sea-going) it is only possible to “jump” in control from one vertex to another. 

This conclusion about the relay character of the solution implies another one, which is equally 
important. It defines the direction, in which theoretical studies in assessment of models parameters 
should be developed. If in the process of model control there is a “jump” from a certain vertex of D-
field to the diagonally opposite vertex, theoretical studies should be directed to narrowing down of D-
field in the direction of this diagonal. If such a “jump” is not taking place, only such methods of 
précising models parameters should be preferred which change D-field in the direction of Hamiltonian 
Н(С) growth. It immediately allows rejecting the methods which change D-field in the directions, 
opposite to the above stated. 

Let’s go over to the concrete equations applied to a vessel’s model that realize suggested general 
positions. Let’s choose model structure, that includes traditional linear to drift angle β and angle rate 
of turn ω parts, and also conjugated non-linearities of type 322 ,,, βωβωββ . We will also include 
into identified parameters a coefficient, defining head resistance, proportional to the square of speed 
and a parameter conjugated with the coefficient of propeller suction. The system of six first degree 
equations will look the following way:  

vfVCPeCVCCVCVCVCdtdV =−++−−−= 2
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βββωβδβ fVCCVCVCdtd =−−−= 4321/ ,     (9) 

ωωβωβδω fVCVCVCVCdtd =−−+= 2
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KfdtdK ==ω/ , 

XfKVdtdX =−= )sin(/ β , 

YfKVdtdY =−= )cos(/ β ; 
The system (9) includes six equations for six vessel state variables ωβ ,,,,, KVYX  and includes 

11 invariables of model parameters )111( …=jC j , which should be identified. Let’s introduce six 

conjugated variables YXKv pppppp ,,,,, ωβ  and write down Hamiltonian Н for optimality condition 
in the equation (2): 
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Writing down the expressions in the right part of the system (9) and regrouping the components, 

let’s write (10) in the form of linear function of jC  parameters: 
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Introduced conjugated variables are described by six differential equations, that come out of 
correlations (7): 
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εα XXXHdtdpX −=∂−∂= , 

)(2// 2
εα YYYHdtdpY −=∂−∂= .        (12) 

Solution of first degree systems (9) and (12) gives 12 arbitrary invariables, for definition of which 
12 marginal conditions are necessary. Five of them for initial time t0 (without loosing generality it can 
be accepted as zero) are obtained by equating parameters of model state to the value, obtained in 
monitoring the object: 

εXX = , εYY = , εVV = , εKK = , εββ = , εωω = .        (13) 
At the moment t = tf summarizing object’s movement monitoring final marginal conditions are 

much more complicated. Here one can require only a certain approximation degree of some 
parameters of model and object state, for example: 

222 )()( rYYXX ≤−+− εε , 
22)( VVV εε ≤− ,           (14) 
22)( KKK εε ≤− , 
22)( ω

ε εωω ≤− , 

ftt = ; 

where Vε , Кε , ωε  - are set up by us deviation values of final motion parameters. 
These conditions for getting into a certain field of parameters can be reduced to setting the border 

of the field, changing in (14) in equations for equations. This comes out of the idea, which coming into 
the field with constant change of state is possible only when crossing its margins. Let’s name marginal 
conditions (14) with a change of inequalities for corresponding equations. These equations imply so 
called transversality conditions, including conjugated variables. In the general form they look like this: 

∑ =∂∂Λ+ 0)/( ijji XGP ;                   (15) 
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Here 0),,( 21 == nXXXGG …  –  is the marginal condition, iX – parameters of the object state, 

ip – corresponding conjugated variables, and jΛ – new unknown invariables. Considering marginal 
conditions (14а), we get the following view of transversality conditions in accepted indexes not by the 
number, but by the name of state variable: 

0)(21 =−Λ+ εXXPX , 
0)(21 =−Λ+ εVVPv , 
0)(21 =−Λ+ εYYPY ,     (16) 

0)(21 =−Λ+ ε
ω ωωP , 

0)(21 =−Λ+ εKKPK , 
0=βP , ftt = ; 

Appearance of four new invariables will lead to the common number of unknown invariables, that 
is equal to 16. So long we only have 15 conditions: 5 marginal conditions (13), four marginal 
conditions (14) and six transversality marginal conditions (16). One missing marginal condition we 
will get from the consideration that Hamiltonian maximum (11) for the final moment of time turns into 
zero according to the maximum principle: 

0)( == fttH ;     (17) 
This equation includes both variables of condition and conjugated variables. The problem is closed 

by this marginal condition and we can try to make attempts to find solution. Existence and singularity 
of this solution in our case has been shown earlier as existence of the single contact point of the 
general position hyperplane. 

constH =  with the control field D in one of its vertices. As for finding the solution, it can be 
obtained only by numerical methods [2], considering the general complexity of this problem. Such 
complexity is first of all connected with the fact that the problem is a two point Cauchy problem: a 
part of marginal conditions is set for 0=t , and the other part for ftt = , that requires testing in 
obtaining solution. But we undertake attempts to find such solution.  

In conclusion let’s consider example of using Pontryagin maximum principle method for the 
simple acceleration(stopping) of the ship on a straight-line trajectory motion task. In this case 
equations system (9) solved by two differential equation: 

      2
0 1e

dV C P CV
dt

= − ,       (18) 

dx V
dt

= ; 

Here mathematical ship’s model contains only two constants C0 and C1. Let’s choose for 
minimization of functional acceleration time or stopping time i.e. let’s consider classic speed-in-action 
problem 

}{
0

min min
ft

fdt t
⎧ ⎫⎪ ⎪ =⎨ ⎬
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∫ ;     (19) 

In this case Hamiltonian will be as follows: 
2

0 0 1( ) ( )V e XH P P C P CV P V= − + − + ;    (20) 
and equation for conjugated variables takes the form: 

12V
V x

dP H P C V P
dt V

∂= − = −
∂

,     (21) 

0XdP H
dt X

∂= − =
∂

, т.е. X VP P const= = ; 
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Due to similarity of input P0, PV, PX in H we can consider P0=1. 
Partial derivatives of Hamiltonian H with respect to ship’s model are: 

0
V e

H P P
C
∂ =
∂

,     (22) 

1

2 V
dH P V
dC

= − ;     (23) 

Let’s carry out analysis for acceleration: 
0eP > , 
0V > , 

[ ]
0

V
Hsign sign P
C

⎡ ⎤∂ =⎢ ⎥∂⎣ ⎦
,     (24) 

[ ]
1

V
Hsign sign P
C

⎡ ⎤∂ = −⎢ ⎥∂⎣ ⎦
;    (25) 

These marks are defining position of hyperplane H=const fractional to closed area D and defining 
the normal line n  to this hyperplane in growing direction of H. Here, in our case of two-parameters 
ship’s model, these properties easily demonstrated on fig. 1. 

 
Fig. 1. Position of hyperplane H 
Рис. 1. Расположение гиперплоскости H 

 
Function H reach her maximum in the down right corner of D-area. Therefore during calculation 

of parameters of this ship’s model, among all existing alternatives, we are to choose those which 
makes C0 maximum and C1 minimum. Thus, the proposed development may be useful in the design of 
navigational instruments, such as [14]. 
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