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MINIMIZATION OF BUS STOP NUMBER ON A BUS STATION 
 

Summary. A bus station contains several bus stops. Only one bus can occupy a single 
bus stop at a time. Buses of many trips arrive to the bus station during the day (or during 
another considered period) and every bus occupies a bus stop for a certain time interval. 
The set of available bus stops is limited. This paper studies a problem how to assign a bus 
stop to every bus trip in order to minimize the number of assigned bus stops and in order 
to comply several additional conditions. Several approaches to this problem are 
presented. These approaches differ according to considered additional conditions. 

 
 
 

MINIMALIZACJA LICZBY PLATFORM NA STACJI AUTOBUSOWEJ 
 

Streszczenie. Na stacji autobusowej może znajdować się kilka platform. W tym samym 
czasie przy jednej platformie może znajdować się tylko jeden autobus. W ciągu dnia na 
stację autobusową przyjeżdżają autobusy z różnych połączeń i każdy z nich zajmuje 
platformę przez określony czas. Ten artykuł ma na celu pokazanie problemu 
przyporządkowania platform do wszystkich połączeń i jednoczesnej minimalizacji liczby 
platform przy spełnieniu określonych warunków. Prezentowane są różne sposoby 
rozwiązania problemu. Każdy ze sposobów różni się w zależności od dalszych 
warunków. 

 
 

1. INTRODUCTION 
 

A bus trip (or a bus journey) is a one-way movement of a bus along a route between two terminal 
points. Bus trips are arranged into lines. A line is a set of trips having the same or similar route. As a 
rule, a line contains trips having two opposite directions – back and forth. A subset of trips of a line 
having the same direction is called a line direction. 

Buses of several trips from various lines and many directions arrive and depart from a bus station 
in departure times determined by the time table. A bus station contains several bus stops. Each bus 
stop has capacity equal to 1, i.e. only one bus can stay at one bus stop at a time. In the ideal case, one 
bus stop is assigned only to the trips of one particular direction of one line. This requirement is 
motivated by the effort to make the orientation at the bus station for passengers as easy as possible. 
But the number of bus stops at the bus station is limited and is less than the number of all line 
directions of all bus lines. Therefore more line directions have to share the same bus stop. 

In a railway station the number of platforms is very small (in comparison to a bus station) and 
therefore the problem of train trips – platform assignment takes neither directions nor train lines into 
consideration. Therefore the trip-platform assignment problem for a railway station is simpler from the 
mathematical point of view. 
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2. CHAPTER UNCODITIONAL BUS STOP MINIMIZATION 

 
Let us study the case in which there are no restrictions to bus stop assignment to trips. This 

situation can occur on small bus stations with a small number of bus stops or on railway stations. Let 
{ }ntttT ,,, 21 !=  be the set of all trips with corresponding arrival times naaa ,,, 21 !  and departure 

times nddd ,,, 21 ! . Trip 𝑡! occupies the bus stop in the interval ),( ii da .  
Define 
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We see that we got a classical assignment problem, which can be solved, in polynomial time. 
If the optimum solution of problem (2) – (5) gives less or equal platforms than available number, 

we can try to find such an assignment, which allows for train or bus delay 𝛿. 
Define 
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and solve the following problem: Minimize ∑∑ ==
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If the resulting number of platforms is greater than available number, try this procedure with smaller 
𝛿. 

However, this optimization does not take line directions into account at all. But it gives the exact 
lower bound for number of bus stops and the optimum solution can be used as a starting solution for 
further heuristic algorithms, which can improve some objective function expressing additional special 
requirements for bus stop assignment. 

 
There exists a simpler way how to compute the lower bound for the number of used bus stops.  
For every trip 𝑡! we can construct the function 𝑓! 𝑥  (called deficit function) with the domain 
1440,0  (the set of minutes of the day) defined 
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It holds 𝑓! = 1 if and only if 𝑥 ∈ 𝑎! ,𝑑!  where 𝑎! is arrival time and 𝑑! is departure time of trip 𝑡!. 
If 𝐷is a line direction (i.e. a set of trips of the same line and the same direction) the deficit function 

of line direction 𝐷 is defined as 
𝑓! 𝑥 = 𝑓! 𝑥!∈!                                                                          (8)  

 
Let nfff ,,, 21 !  are deficit functions for trips nttt ,,, 21 ! . Denote by )(xF the sum of all deficit 

functions, i.e.: 
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)(xF  is called cumulative deficit function. The lower bound for the number of bus stops can be 
computed as max!!!,!,…,!""# 𝐹(𝑥) . However, this simple approach does not give us any bus stop 
assignment. 

In many cases arrival times are not given. In these cases we can assume that 𝑎! = 𝑑! − 𝛿, where 𝛿 
is the time needed for boarding the bus (in most cases 𝛿 ∈ 5,10 ). An example of a real cumulative 
deficit function for bus station Zvolen and for 𝛿 = 10 is in Fig.1. 

  

 
 

Fig. 1. Cumulative deficit function for bus station Zvolen 
Rys. 1. Łączny deficyt funkcji dla stacji autobusowej Zvolen 

 
 

3. CHAPTER GRAPH COLORING MODEL FOR THE BUS STATION PROBLEM  
 

In this section we will minimize the number of used bus stops with the only requirement that all 
trips of the same line directions are assigned the same bus stop. 

Let 𝑝, 𝑞 be two line directions. It is easily seen that all trips of two line directions 𝑝, 𝑞 can share the 
same bus stop if and only if 1)()( ≤+ xfxf qp  for all 1440,0∈x  – in this case we will say that the 
line directions p, q are compatible. More general, the set S of line directions can share the same bus 
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stop if and only if the sum of their deficit functions is less or equal to 1, i.e. if 1)( ≤∑

∈Ss
s xf  for all 

1440,0∈x  – in this case we will say that S is a set of compatible line directions. 

 
 

Fig. 2. Deficit functions 𝑓! 𝑥 , 𝑓!   𝑥  compatible, 𝑓! 𝑥   incompatible with both 𝑓! 𝑥 , 𝑓! 𝑥  
Rys. 2. Niedobór funkcji 𝑓! 𝑥 , 𝑓!   𝑥  zgodny, 𝑓! 𝑥    niezgodny z 𝑓! 𝑥 , 𝑓! 𝑥  

 
Let 𝑆 be a set of all line directions, which use the bus station currently under consideration. Define 

a graph𝐺 = 𝑉,𝐸  with the vertex set  𝑉 = 𝑆 and with the edge set E containing all unordered pairs 
(𝑝, 𝑞) of uncompatible line directions. We can formulate the problem of minimization of used bus 
stops as the following graph coloring problem: 

To assign a color (= bus stop) to every vertex (= line direction) of graph 𝐺 = 𝑉,𝐸  such that no 
adjacent vertices (= no incompatible line directions) are assigned the same color (= the same bus stop) 
and such that the number of used colors (= the number of used bus stops) is minimal. 

The assignment of colors to vertices of the graph 𝐺  such that no adjacent vertices are assigned the 
same color is called the proper graph coloring. The chromatic number of a graph, denoted 𝜒 𝐺 , is the 
minimum number of different colors required for a proper graph coloring. The graph coloring problem 
is to find a proper graph coloring with 𝜒 𝐺  colors. 

The following exact graph coloring algorithm comes from the Demel's book 1. Let   𝑉!     be the set of 
all neighbours of the vertex 𝑥 in graph  𝐺. Assume that 𝑉! = 1,2,… , 𝑛 . Let 𝐵 𝑗  be an actual color of 
vertex 𝑗. 
Set                                                𝑃 𝑥 = 𝑉! ∩ 1,2,… , 𝑥 − 1   

                                               𝐹 𝑥 = min 𝑖  |      1 ≤ 𝑖,            ∀𝑗 ∈ 𝑃 𝑥   𝑖 ≠ 𝐵 𝑗   
                                               𝐺 𝑥 = min 𝑖  |    𝐵 𝑥 < 𝑖,∀𝑗 ∈ 𝑃 𝑥   𝑖 ≠ 𝐵 𝑗    
 

𝐹(𝑥) is the lowest feasible color number for vertex   𝑥. Provided that the vertex   𝑥 is colored with color 
𝑥 , 𝐺(𝑥) is the lowest feasible color number greater then B[x] which can be used for vertex 𝑥. 

 
- Step 0. Set 𝐵[1]   =   1    and sequentially for every 𝑥   =   2;   3, . . . , 𝑛 set 𝑥 =   𝐹(𝑥) . 
- Step 1. Set 𝐹𝑀𝐴𝑋   =   max!!!!!{𝐵[𝑥]}  . Copy array 𝐵[  ]  into array  𝑅𝐸𝐶𝑂𝑅𝐷[  ].  
- Step 2. Find in array 𝐵[  ] the least  𝑦  such that 𝐵[𝑦]   =   𝐹𝑀𝐴𝑋. 
- Step 3. Set    }{max )( kx yPk∈=  
- Step 4. If  x = 1, STOP. Chromatic number of graph  G  is  = FMAX  

          and the  corresponding graph coloring of  G  is in array RECORD[ ]. 
- Step 5. If  𝐺(𝑥)   ≥   𝐹𝑀𝐴𝑋    or 𝑖𝑓    𝐺(𝑥)   >    (max!!!!!{𝐵[𝑖]}   +   1),  
              set   𝑥 ∶=   𝑥   −   1  and Goto Step 4. 

         Otherwise set 𝐵[𝑥]   =   𝐺(𝑥),  𝑧   =   𝑥   +   1. 
- Step 6. Set [𝑧]   =   𝐹(𝑧) . If  𝐵[𝑧]   ≥   𝐹𝑀𝐴𝑋,  set 𝑦   =   𝑧  and Goto Step 3. 

          If  𝑧   <   𝑛,  set  𝑧 ∶=   𝑧   +   1 and repeat Step 6. 
                If  𝑧   =   𝑛,  we have a new better solution. Goto Step 1. 
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Another good graph coloring algorithm was designed by M. A. Trick – see [3]. This algorithm 
makes use of independent sets and seems to be faster than that of Demel. Nevertheless, graph coloring 
problem is NP – hard. One good property of Demel’s algorithm is that after Step 1 array 𝑅𝐸𝐶𝑂𝑅𝐷     
contains a suboptimal solution. 

 
4. CHAPTER ANOTHER APPROACH TO BUS STOP ASSIGNMENT 

 
Practical experiences show that personal bus transport providers do not strictly follow the rule that 

all trips of one line direction have to share the same bus stop. This relaxation can lead to even better 
solution. However, we still have to endeavour to minimize number of cases when a bus arrives to bus 
stop with different line direction. 

Starting solution for this approach can be obtained as a solution of the assignment problem (2) – 
(5). As a result we will obtain the minimum number of bus stops 𝑘 and for every bus stop 𝑖  the 
corresponding set of trips   { }

iimiii tttT ,,, 21 !=  which will share the bus stop 𝑖.  
 Let 𝑝, 𝑞 be two trips sharing the same bus stop. Let us define the inconvenience of trips 𝑝, 𝑞 as 
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The minimization of  ( )kTTTC ,,, 21 !  tends to assign all trips having the same line direction to the 
same bus stop since it makes the number of interactions of trips with different line directions in the 
same bus stop as low as possible. If the bus station has more bus stops than the minimum number 𝑘 
obtained from solution of (2) – (5), we can make another starting solution from solution kTTT ,,, 21 !  
by decomposing some sets into two or more pieces. We can use also more complicated objective 
function for )( iTc  which can express incompatibility of trips in a quantitative way. 
 

 
 
Fig. 3. Decomposition of sets of trips on platforms in- 
            to heads and tails 
Rys. 3. Rozłożenie zestawów podróży na peronach na  
             przody i tyły 

 
Fig. 4. Decomposition of sets of trips on platforms in- 
            to heads, mids and tails 
Rys. 4. Rozłożenie zestawów podróży na peronach na  
             Przody, środki i tyły 

 
The following algorithm showed to be extraordinary good for minimization of objective function 

𝐶 𝑇!,      𝑇!,… ,𝑇!  defined in (10).  
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- Step 0. Solve assignment problem (2) – (5). The result is 𝑘 - the minimum number of bus stops 𝑘  
                and for every bus stop 𝑖 a set of trips { }

iimiii tttT ,,, 21 !=  assigned to bus stop. 
- Step 1. For 𝑟 = 0  to  1400 do: 
A) Decompose every set 𝑇! into two sets:  𝐻𝐸𝐴𝐷 𝑇!  – the subset of trips departing in time 𝑟 or  
     sooner and 𝑇𝐴𝐼𝐿 𝑇!  – the subset of trips departing later than 𝑟. 
B) For every pair 𝑖, 𝑗  do: 
• Compute 𝐶!"   −  the inconvenience of the set 𝐻𝐸𝐴𝐷(𝑇!) ∪ 𝑇𝐴𝐼𝐿 𝑇! . 
     If 𝐻𝐸𝐴𝐷(𝑇!) ∪ 𝑇𝐴𝐼𝐿(𝑇!   ) contains incompatible trips then set 𝐶!" = ∞. 
• Find an optimum assignment of heads to tails with respect to cost 𝐶!".  
• Create new sets 𝑇 by combining heads and tails according to resulting assignment. 

 
 - Step 2. For 𝑟 = 0 to 1399 do: For 𝑠 = 𝑟 + 1  to  1440 do: 
A) Decompose every set 𝑇! into three sets:  𝐻𝐸𝐴𝐷(𝑇!   ) – the subset of trips departing sooner than 𝑟,   
     𝑇𝐴𝐼𝐿(𝑇!   ) – the subset of trips departing later than 𝑟 and 𝑀𝐼𝐷 𝑇!  – the subset of trips departing in  
     closed interval 𝑟, 𝑠 . 
B) For every pair (i,j) do: 
• Compute 𝐶!"  - the inconvenience of the set 𝐻𝐸𝐴𝐷(𝑇!) ∪𝑀𝐼𝐷 𝑇! ∪ 𝑇𝐴𝐼𝐿(𝑇!   ). 
                            𝐻𝐸𝐴𝐷(𝑇!) ∪𝑀𝐼𝐷(𝑇!) ∪ 𝑇𝐴𝐼𝐿(𝑇!   ) contains incompatible trips then set 𝐶!" = ∞. 
• Find an optimum assignment of heads to tails with respect to cost 𝐶!".  
• Create new sets 𝑇 by combining heads, mids and tails according to resulting assignment. 

 
- Step 3. If no improvement of total inconvenience occurred neither in Step 1. nor in Step 2. – STOP. 
               Otherwise GOTO Step 1. 

 
 

5. CONCLUSION 
 
The aforementioned techniques were applied to bus station of the Slovak town Zvolen. This bus 

station consisted of 26 bus stops. The question was whether this number could be decreased to 20 in 
order to use 6 bus stops for other purposes. The trips were given by their departure times 𝑑!, 
corresponding arrival times were calculated as 𝑎! = 𝑑! − 𝛿 for 𝛿 = 5. Graph coloring approach did 
not offer satisfactory solution. Unconditional bus stop minimization resulted in 13 bus stops. 
Afterwards the procedure described in chapter 4. was applied.  It gave an outstanding result for 20 bus 
stops where trips of one line direction were assigned to the same bus stop with very rare exceptions. 
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