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COMPUTING MODEL FOR SIMULATION OF THE POLLUTION 
DISPERSION NEAR THE ROAD WITH SOLID BARRIERS 
 

Summary. In this study, a numerical model is proposed for calculating pollution 
zones near the road, taking into account the geometry of the automobile transport, 
meteorological conditions, the location of the barriers and their height, and the chemical 
transformation of nitrogen oxides in the atmospheric air. The numerical solution is based 
on the integration of the mass transfer equations using the finite-difference method. To 
determine the components of the air flow velocity vector, a two-dimensional model of the 
potential flow is used, where the Laplace equation for the velocity potential is the 
modeling equation. Based on this numerical model, a software package has been 
developed that allows computational experiments and does not require large expenditures 
of computer time. Based on the results obtained, an assessment was made of the 
effectiveness of the use of barriers to reduce the level of air pollution near highways. It 
has been established that the use of barriers of different heights reduces the level of 
pollution behind the road by approximately 20-50%. 

 
 

1. INTRODUCTION 
 

Transport is one of the largest sources of pollution. For example, according to statistics for 2017 
[1], about a quarter (23%) of greenhouse gas emissions in the EU were attributable to vehicle 
exposure. Despite the fact that thanks to very radical EU directives that plan to significantly reduce air 
emissions for all sectors of the European economy, the percentage ratio between individual sectors 
remains at the same level. As an example, the data obtained for the UK can be cited when this country 
was still in the EU [2]. The dynamics of nitrogen oxides emissions over an almost 30-year period is 
shown in Fig. 1a. A similar situation is observed in other European countries, for example, in Poland 
(Fig. 1b), although the decrease in emissions is not so noticeable here, which is explained by the 
relatively older car park. Despite the fact that there has been a significant reduction in this type of 
waste, road transport is the main source of these emissions. 

The effect of harmful emissions on public health is one of the most significant problems of the 
modern industrial society. The given data on nitrogen oxides emissions were not chosen by chance, as 
this type of emissions is one of the most dangerous. The authors are not health professionals, so it is 
best to refer to works by well-known authors. In particular, an article [3] states: “Nitrogen oxide is 
a traffic-related pollutant, as it is emitted from automobile motor engines. It is an irritant of the 
respiratory system as it penetrates deep in the lung, inducing respiratory diseases, coughing, wheezing, 
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dyspnea, bronchospasm, and even pulmonary edema when inhaled at high levels”. It should be noted 
that nitrogen oxides are only one of the components of harmful emissions emitted by road transport. 
There are many more sources that analyze the harmful effects of emissions from road transport on 
human health. 

Air pollution is one of the most serious environmental problems of all large urban centers. 
Emissions from automobile transport in large cities significantly increase the pollution rates of all 
environmental components. Dust and aerosol particles get deposited on the plants, absorbed by the 
upper layers of the soil, and washed out by precipitation and drainage flows. A large number of toxic 
substances that enter the atmospheric air are distributed at the level of the human respiratory system, 
causing various diseases. Harmful substances spread along both sides of the motorways, having a 
negative effect on drivers, pedestrians, and the population in general, whose places of residence are 
located near the roads. The composition and amount of exhaust gas emissions depend both on the 
condition of the engine and its technical level and on the type of fuel, but anyway, emissions contain a 
large number of toxic compounds, including benzopyrene, aldehydes, nitrogen oxides, sulfur dioxide, 
carbon, and lead. 

a 

  b 
Fig. 1. Annual emissions of nitrogen oxides by 2019 major emissions sources: a) in UK 1990, 2005, 2018 and  
            2019 [2]; b) in Poland on the base of [19] 
 

There are conflicting trends. On the one hand, new European emission standards are being 
introduced for road transport in Europe, for example, for passenger cars, the Euro 6d standard was 
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approved in January 2020. On the contrary, there is a constant increase in the number of vehicles, the 
construction of new roads, transport hubs, and parking lots, which together occupy a significant 
percentage of urban areas. After certain scientific studies, the formation of zones along the roads, 
where the concentration of exhaust gases exceeds the maximum permissible level, was revealed. The 
concentration of harmful impurities in the air along highways depends on the organization of traffic on 
the roads, the characteristics of the traffic flow, environmental parameters, the location of buildings, 
and the presence of green spaces. In places with low traffic capacity, near public transport stops, the 
concentration of pollutants reaches a maximum, and the organization of continuous movement of 
automobile transport leads to a decrease of pollutants from automobile transport. 

An obvious solution to the problem of environmental pollution in the area of high-traffic roads 
(motorways and expressways) is to build them as far as possible from settlements. Unfortunately, it is 
not always possible to find such technical solutions. This is especially true for areas with a high 
density of urban development. The territories of southern Poland can be considered as an example. 
There are large urban agglomerations here, for example, the Upper Silesian Industrial Region or the 
Krakow Metropolitan Area. These territories occupy significant areas, and it is difficult to build the 
main road that would not cross urban areas. Fig. 2 shows the central part of Katowice, which is 
crossed by the European A4 motorway. As you can see from the given route, walking distance to the 
central square of the city is 1.5 km. It is known that the use of highway noise barriers is effective not 
only in terms of protecting the population from noise effect from heavy traffic on expressways but also 
in terms of reducing local pollution in areas adjacent to highways [4]. These solutions are effectively 
used for the already mentioned problematic sections of motorways that cross densely populated urban 
areas. Fig. 3 shows the use of highway noise barriers on the previously described section of the A4 
motorway in Katowice. Depending on the surrounding area, one-sided or two-sided barriers are used 
to surround the carriageway. 

Minimizing the level of chemical pollution near motorways is an extremely important task. One of 
the effective ways is the usage of barriers that allow changing the trajectory of pollution particles and 
reducing the local level of chemical pollution [5–7] and its concentration. A number of factors affect 
the efficiency of the barriers: meteorological conditions (wind speed and direction), the intensity of 
pollutants’ emission, and the presence of local obstacles, i.e. when installing barriers, it is important to 
take into account the specific local conditions. Moreover, the result of using barriers in comparison 
with green spaces is observed from the moment they were installed, regardless of the period of the 
year. Predicting the level of concentration of harmful particles in the presence of barriers is a 
necessary component at the design stage of new roads or when reengineering existing ones, taking into 
account changes in the width of traffic way, which can lead to the formation of stagnant zones on the 
leeward side of barriers, as well as to justify changes in traffic. 

In many scientific research studies, modified Gauss and CFD models are used to solve this 
problem. Thus, in a study [8], the authors proposed a three-dimensional computational hydrodynamic 
CFD model, which is based on the k–ɛ turbulence model, and made comparisons with experimental 
studies in a wind tunnel. It has been shown that the usage of barriers with a height of 3 m to 18 m near 
the road reduces the maximum value of the pollutant concentration by 15–61%. In the paper by Mao et 
al [9], experimental studies of the road dust concentration were carried out and numerical CFD 
modeling was developed taking into account the influence of the roadside protective strip of 
vegetation. Jason et al [10] proposed the CFD model CTAG, which implements a multiparametric 
methodology that takes into account the particle velocity, exhaust gas properties, and meteorological 
conditions, but this model still requires large computing resources. In other studies [11-12], models of 
air pollution dispersion in light wind, stable, and transient conditions are proposed; dispersion models 
are investigated; and the role of atmospheric stability, wind speed, and boundary layer height on the 
concentration change in the course of experimental studies is shown. However, the proposed models 
[10-12] do not take into account the presence of obstacles (barriers), which significantly affects the 
aerodynamics of the flow. Moreover, comparative studies of the stationary Gauss models AERMOD, 
CALINE 3 and 4, ADMS, and RLINE [13] were carried out, which give similar results under 
inversion conditions but mixed results under convection conditions. These models do not take into 
account the change in the flow rate with time and the change in meteorological conditions; however, 
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the importance of taking these parameters into account is shown in other research studies [8-12]. 
Therefore, the modified Gaussian models are convenient and quick to calculate, but cannot take into 
account the presence of obstacles, namely barriers. CFD models are based on solving the Navier-
Stokes equations; they can calculate any configuration, and they are the most powerful modeling tool, 
but for the implementation of such developments, a significant amount of time is required to obtain a 
result, as the calculation time can be several days. 

 

 
Fig. 2. Determining the distance for the central part of Katowice using Google Map 
 

       
 

Fig. 3. Using highway noise barriers on the A4 motorway in Katowice 
 

The purpose of this work is to develop an effective scientifically grounded model for calculating 
the level of atmospheric air pollution by automobile transport emissions, which allows to assess 
quickly the choice of barrier sizes and their location, but at the same time, it should be multifactorial 
and nonstationary. 

 
2. STATEMENT OF THE RESEARCH PROBLEM 
 

We consider a city road with continuous four-lane traffic; the width of one traffic lane is 3.75 m, 
and on one side of the road, it is supposed to place protective barriers, as there is a residential area 
(Fig. 4). The task is to calculate the zone of air pollution during the emission from automobile 
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transport (NO, ), as well as to assess the effect of barriers of different heights on reducing the 
concentration of harmful substances behind the barrier. 

 
Fig. 4. Scheme of the calculated domain: 1 – automobile transport, 2 – emission source (exhaust pipe of a car),  

3 – barrier; A, B, C, D – boundaries of the calculated domain 
 

Under the action of sunlight ( ) nitrogen dioxide decomposes into nitric oxide and atomic 
oxygen, which converts oxygen ( ) into ozone . 

Accumulating in the lower layers of the atmosphere, these substances have a harmful effect on the 
human body. The main reactions in this case are reactions (1) – (3) [14-16]: 

 , (1) 

 , (2) 

 , (3) 

where  is the reaction rate parameter for the photolysis process depending on the amount of 
ultraviolet radiation, and  is the reaction rate parameter for  [1/s]. 

In this paper, we consider the transformation process of nitrogen oxide and nitrogen dioxide near 
the road. The choice of only these pollutants is also due to the fact that to calculate the chemical 
transformation of emissions in the atmosphere, it is necessary to know the rates of their chemical 
reactions, which are determined experimentally and studied in other articles [14–16]. The solution of 
the task for forecasting air pollution by emissions from automobile transport is carried out into two 
stages. 

Since the process of transformation of , , and  in the atmospheric air is considered and 
it is taken into account that changes in the concentration of these substances are influenced by air flow 
rate, atmospheric diffusion, and emission intensity, the mass transfer equation is used for modeling 
[17]. This equation shows the change in concentration of , , and  in the study area over 
time. Therefore, at the first stage of the solution, the process of transformation of these substances in 
the atmospheric air is modeled on the basis of mass transfer equations (4) - (6): 
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 , (5) 

 , (6) 

where (x, y, t), (x, y, t), and (x, y, t) – concentration of pollutants , , and , 

[kg/m3], respectively;  and – emission intensity  and , respectively, from the i-th 
source of emission (automobile transport), kg/(s·m3); u, v – wind speed vector components, [m/s]; 

 – turbulent diffusion coefficient, [m2/s];  – coordinates of pollutant sources, [m]; 
and  – the Dirac delta function that simulates the presence of a pollutant release. 

The diffusion coefficients are calculated by the formulas: m depending 
on the atmosphere stability level; U [m/s] – wind speed that is the known value of the wind flow velocity 
and can be calculated by the formula: , where  is the value of the wind speed at a 
certain fixed height =10 m, and , as it depends on the roughness of the underlying 

surface and the stability class atmosphere (  was taken in the work); and , where 

m2/s within the surface layer of the atmosphere [17], . The degree of dependence 
for the velocity profile was taken for calculations according to the recommendations of prof. Berlyand 
M.E. and Byzova N.L. (Voeikov Main Geophysical Observatory), and the parameter  is taken from 
the works of prof. Bruyatskyi Ye.V. (Kyiv, Institute of Hydromechanics of NAS of Ukraine). 

The delta function is zero everywhere, except for the cells where the i-th source of pollution is 
located. The emission of pollutants from automobile transport is modeled by point sources (cars) of a 

given intensity , , and n is the number of pollution sources.  

means that the action of all pollution sources with a specific intensity of the pollutant is taken into 
account, as well as the principle of superposition. 

In discrete form, the Dirac delta function is «smeared» over the area (volume) of the difference cell 
while maintaining the total amount of pollution, i.e. the intensity of the source is considered as 
uniformly distributed over the cell; when the grid is refined, we arrive to the value at the point. 

At the second stage of solving the task, the calculation of the chemical transformation of substances 
in the atmospheric air is carried out using the following dependences [14-15]: 
 , (7) 

 , (8) 

 . (9) 

It is known that the emission  is about 5% of the emission , and the rest 95%, is the 
emission . Chemical reactions and the photolysis reaction are interconnected in the atmosphere. 
The photolysis rate and the temperature-dependent reaction rate parameters are determined by 
expressions (10) – (11), obtained on the basis of processing the experimental results [15]. 
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Nitrogen dioxide decomposes with the evolution of nitrogen oxide, and later nitrogen oxide is 
oxidized by ozone. After a series of successive reactions, one molecule of nitrogen oxide contributes 
to the destruction of 10 ozone molecules, because  is more toxic than . 

For numerous solutions of equations (7) - (9) taking into account dependencies (10) - (11), a 
program with the implementation of Euler method was developed [17]. 

This paper considers the dispersion of emissions from automobile transport for the case when 
protective barriers (barriers) are located near the road, as shown in Fig. 4. In this case, an uneven air 
flow velocity field will form in the study area. This field must be known to solve the modeling 
equations (4) - (6). A potential flow model is used to calculate the air flow under such conditions. In 
this case, the modeling equation is the Laplace equation for the velocity potential [17]: 

 ,  (12) 

where Р(x,y) is velocity potential. 

The corresponding boundary and initial conditions are set (Fig. 4): 
- at the boundary A – the flow enters the computational domain, and the Neumann boundary condition 

 is set for the velocity potential; 

- at the boundary B – the flow leaves the computational domain, and the Dirichlet boundary condition 
 is set for the velocity potential, where  is a certain numerical constant equal to 100; 

- at the boundary C – the upper boundary, a solid impenetrable wall, the non-penetration condition is set 

, as there cannot be an infinite boundary in numerical calculations, then it is chosen at a sufficient 

distance where the curvature of streamlines is insignificant; 
- at the boundary D – the lower boundary, a solid impenetrable wall, the non-penetration condition 

 is set; 

- on all solid walls of barriers and the car, depending on the direction of the normal, the non-penetration 
condition must be satisfied. 

The components of the air flow velocity vector are calculated based on the following dependencies 
[17]: 

 , . (13) 

 
3. NUMERICAL MODELING 
 

For the numerical integration of the Laplace equation (12), the method of conditional 
approximation is used. Firstly, the Laplace equation (12) is reduced to an evolutionary equation using 
the solution to be established in time [17]: 

 , (14) 

where  is the fictitious time, at , the solution of equation (14) tends to the solution of the 
Laplace equation (12). Namely, stationary equation (12) is the limiting case of non-stationary equation 
(14), i.e. when the solution to equation (14) stops changing in time and enters a stationary regime, then 
this is the solution to equation (12). This approach was introduced by A.A. Samarsky and 
G.I. Marchuk when creating splitting methods. To solve this equation, it is necessary to set the initial 
condition, the potential field at . For example,  can be taken in the entire computational 
domain at . 
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Difference approximation of the derivatives is used for numerical integration. A uniformly 
distributed rectangular grid in two-dimensional space is considered, each grid cell has  
dimensions along the corresponding Cartesian axis, and the coordinates of the grid nodes are 
calculated as follows: , . Time is evenly sampled . The 
function  is expressed at any node by a discrete analogue [17]: 

 . (15) 
To solve equation (14), the method of conditional approximation is used; in this case, the 

difference equations have the following form: 
- at the first step of splitting 

  (16) 

- at the second step of splitting 

 . (17) 

Thus, when using the method of conditional approximation, the numerical solution of the two-
dimensional equation (12) for determining the velocity potential is carried out in two steps: “16” and 
“17”. The first one contains the «intermediate» value of the potential  on the time layer 

«n+1/2», and the second – the «final» value of the potential  on the time layer «n+1». 

The calculation ends when the condition  is satisfied, where ε is the calculation 

accuracy, , and n is the iteration number (the number of time steps). 
The components of the velocity vector are calculated from the known values of the velocity 

potential: 

 , . (18) 

To describe the numerical method for solving the transformation equations (4) – (6), we write them 
in the form of the generalized equation of convective-diffusion dispersion of an impurity: 

 , (19) 

where  is the concentration of ;  are components of the velocity vector; 
 is the coefficient of turbulent diffusion;  is the emission intensity of ; 

 is Dirac delta function;  are coordinates of the emission source  
location; and t is time. 

To solve equation (19), the following boundary conditions are set (Fig. 4): 
- at the boundary A – the flow enters the computational domain, for the concentration of this 

impurity, a boundary condition  is set that is the background concentration at time t=0, 
and in the absence of data, the concentration value is taken to be zero; 

- at the boundary B – the flow leaves the computational domain; at the end of the computational 

domain in the numerical model, a boundary condition  is fulfilled; and from a physical point 
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of view, this condition means that the diffusion process at the flow exit boundary is not taken into 
account; 

- at the boundaries C, D and on all solid walls, depending on the direction of the normal, the non-
penetration condition must be satisfied. 

For the numerical integration of equation (19), it is split: 

 , (20) 

 , (21) 

 , (22) 

In order to solve numerically equation (20), the following two-step splitting scheme is used: 
- at the first step, the dependency is used 

 , (23) 

- at the second step, the dependency is used 

 , (24) 

where , . 

For the numerical solution of equation (21), the following two-step splitting scheme is used: 
- at the first step the dependency is used 

 , (25) 

- at the second step the dependency is used 

 , (26) 

where , . 

For the numerical integration of equation (22), Euler's method is used [18]. This method is also 
used for the numerical solution of equations (7 - 9). 

 
4. RESULTS OF COMPUTATIONAL EXPERIMENTS 

 
The developed forecasting method was used to solve the problem of assessing the pollution level 

near the road in the presence of an emission source (automobile transport), with the presence of a 
barrier and in its absence. The program for numerical calculation «Barrier» was created. 

Several scenarios for the location of automobile transport and barriers were considered. The 
calculations were carried out with the following data: air flow rate 5 m/s, average intensity of nitrogen 
oxide emission =4.8 , the authors obtained these data by measuring nitrogen oxide 
emissions from Daewoo Lanos cars with a service life of 7-10 years,  is about 5% of the emission, 
and – 95%, the geometric dimensions of the region are 25 m along the Ox axis and 12.5 m along 
the Oy axis, which is directed vertically upward. The coordinates of the NO and NO2 emissions source 
are the coordinates of the exhaust pipe. It is assumed that this is a point source of emission; therefore, 
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in the mathematical model, it is specified by the Dirac delta function dij, and in the numerical model, 
by the position of the difference cell in which the emission source is located, namely, 

, where  is the real emission of NO and NO2 from the 
automobile transport and  is the area of difference cell. The road is modeled as a set of point 
sources. As a two-dimensional model is used, the wind direction is chosen across the highway (along 
the Ox axis). A model task is solved, taking into account the action of the barrier, and cars with the 
dimensions of width – 1.7 m and height – 1.6 m were considered as automobile transport. However, 
the calculation program allows taking into account any size of automobile transport. 

At the first stage of numerical studies, calculations were carried out with an operating source of 
emission (automobile transport) on the first and fourth lanes of the road, without the presence of a barrier 
(Fig. 5), with a barrier height of H=2.8 m (Fig. 6) and a height of H=5 m (Fig. 7). 

Figs. 5–7 show the distribution of NO concentration as a percentage of the maximum concentration 
value, obtained for a specific calculation option. Comparison of Figs. 5–7 shows that when a barrier 
appears, a zone with a large concentration gradient near it from the side of the highway is formed. This 
is due to the fact that the presence of the barrier helps to slow down the air flow and turn it in the 
vertical direction. Analysis shows that a barrier with a height of H=2.8 m allows reducing the NO 
concentration behind the barrier from 60-65% to 25-30%, and a barrier with a height of H=5 m 
reduces the concentration value to 10-15%. 

 
Fig. 5. Field of NO concentration in the absence of a barrier, where 1 – cars (  as a percentage of =  
           0.3887 mg/m3) 

 
Fig. 6. Field of NO concentration with a barrier H = 2.8 m: 1 – cars, 2 – barrier (  as a percentage of  
           = 0.5554 mg/m3) 
 

At the second stage of numerical studies, the concentration level behind the barrier was compared 
with a different number of emission sources on the road. Namely, the calculations were performed 
with the current emission source (automobile transport) only on the first lane of the road (Fig. 8), on 
the first and fourth lanes of the road (Fig. 7), on the first, second and fourth lanes of the road (Fig. 9) if 
barrier height of H=5 m in each calculation option is used. 
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Fig. 7. Field of NO concentration with a barrier H=5 m: 1 – cars, 2 – barrier (  as a percentage of  
           = 0.7337 mg/m3) 

 
Fig. 8. Field of NO concentration in the presence of a barrier H = 5 m: 1 – car, 2 – barrier (  as a percentage 
           of = 0.2864 mg/m3) 

 
Fig. 9. Field of NO concentration in the presence of a barrier H = 5 m: 1 – cars, 2 – barrier (  as a percentage  
           of = 0.92598 mg/m3) 
 

Analysis of Figs. 7–9 shows the features of pollution zone formation. Figure 8 shows that the 
polluted zone, which is formed from the car in the direction of the barrier, namely in the section with 
the length along the Ox axis from 4 m to 15 m and the height along the Oy axis from 0 m to 2 m, 
practically corresponds to the zone of pollution. This zone of pollution is «classically» formed from a 
single point source. This is owing to the fact that the car body is located at a considerable distance 
from the barrier, which does not significantly affect the formation of the polluted zone. From the 
obtained concentration distribution, it can be seen that an increase in the number of emission sources 
on the road leads to an increase in the value of NO concentration behind the barrier from 10% to 15%, 
even in the presence of a barrier height H=5 m. 
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Fig. 10. Field of NO concentration in the presence of a barrier H = 5 m: 1 – cars without taking in account  
             geometry, 2 – barrier (  as a percentage of = 0.4785 mg/m3) 

 

If we consider two cars that have a body (Fig. 7), then the polluted zone is shorter. So, the zone 
with a pollution of 60–65% in Fig. 7 has a length up to 7.5 m along the Ox axis, whereas in Fig. 10, 
where the geometry of car body is not taken into account, this zone has a length of 11 m along the Ox 
axis. This is owing to the fact that in the absence of a car body, the polluted zone moves freely in the 
direction to the barrier, followed by its merging with the polluted zone from the car located closer to 
the barrier. Analyzing Fig. 7 and Fig. 10, it can be seen that the difference in the formation of the 
polluted zone is manifested in the section before the barrier, namely, the polluted zone with a 
concentration of 10–15% in Fig. 7 sags between two cars, whereas in Fig. 10, this fact is absent. This 
is due to the fact that two car bodies change the aerodynamics of the air flow; a «notch»-type area is 
formed, which leads to a change in the shape of the polluted zone on the highway. Comparison of the 
concentration distribution in Fig. 7 and Fig. 10 shows that not taking into account the geometry leads 
to overestimated concentration values by 25-30%, as the car is also an obstacle in the path of the 
moving stream, which significantly changes the air velocity field. 

In the course of further research, calculations of pollutant concentration level were carried out 
taking into account changes in the geometry of the barrier. As you know, barriers are made not only 
vertical, i.e. perpendicular to the surface of the earth, but also of other forms, namely, different 
curvature of the profile and inclination relative to the ground, which significantly affects the resistance 
of the barriers to the incoming flow, and, accordingly, the appearance of stagnant zones on the 
windward side of the screens. In this paper, it is proposed to change the shape of the screen due to an 
additional horizontal component 1.25 m long at a height of 3.75 m from the earth's surface (Fig. 11-
12), in order to show that the developed numerical model can take into account not only the geometry 
of cars but also the geometry of the screens. In Figs. 11 and 12, the shape of the polluted zone is 
practically the same up to the barrier in the direction of the air flow; however, behind the barrier, a 
significant difference in the shape of the polluted zone is visible, which is explained by the influence 
of the horizontal shelf on the aerodynamics of the air flow. The results of calculation show that the 
level of concentration behind the barrier at a height of the human respiratory system of 1.7 m is 
reduced to 10%. It is known that in the presence of obstacles in the computational domain, zones are 
formed where the streamlines have a large curvature. Under such conditions, some numerical models 
lose their stability, which limits their practical use, as in real conditions, there are a large number of 
combinations of the «road and barrier» location. The choice of such calculation scenarios shows that 
the constructed numerical model has a large margin of stability and can be used to calculate pollution 
zones in areas with different internal geometry. 

The process of impurity propagation considered in this work is multifactorial, as it takes into 
account the mutual influence of emissions from several sources of pollution, the effect of the car body 
as a local obstacle, the location of barriers, the distance from the source to the barrier, and geometric 
form of the barrier. All these factors affect the formation of the impurity concentration field in the 
region under consideration. 
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Fig. 11. Field of NO concentration in the presence of a vertical barrier H = 5 m: 1 – car on the third lane, 2 –  
              barrier (  as a percentage of =0.3742 mg/m3) 

 
Fig. 12. Field of NO concentration in the presence of a vertical barrier H = 5 m and a horizontal shelf: 1 – car in  
              the third lane, 2 – barrier (  as a percentage of = 0.3759 mg/m3) 
 

The constructed numerical model makes it possible to obtain pictures of chemical polluted zones 
and identify subzones where such contamination is more intense (Fig.  5–12). The identification of 
such sub-zones allows to recommend protective measures to minimize the level of contamination, for 
example, by changing the height of the barrier. From the obtained distribution of concentration field 

 (Fig. 6–7), it can be seen that an increase in the height of the barriers leads to a decrease in the 
intensity of pollution in the area of the possible place of residence. Nevertheless, as can be seen from 
Fig. 7, an increase in the intensity of air pollution is observed in the area between the car in the fourth 
lane and the barrier. This is owing to the fact that the presence of the barrier leads to the formation of 
stagnant zones at its location on the side of the road, where the air flow rate is low. Thus, in these 
areas, there are locally high concentrations of chemical pollution, which requires the introduction of 
additional technical means to minimize the level of pollution in these stagnant zones (local suctions). 

 
5. CONCLUSIONS 

 

A numerical model and software implementation for calculating pollution zones near the road are 
proposed. To describe the process of pollutant dispersion, we used mass transfer equations that take 
into account atmospheric diffusion and convective transport of impurities. The potential flow model 
was used to calculate the velocity field. The developed numerical model takes into account the 
chemical transformation of emissions  и  from automobile transport in the atmosphere. A 
feature of the developed model is the ability to carry out calculations taking into account the presence 
of barriers near the road of various heights and geometry, as well as taking into account the geometry 
of the car. The time for carrying out one computational experiment is 10 s. This model can be used in 
serial calculations for a preliminary assessment of air pollution near the road when designing 
protective barriers. On the basis of the computational experiments, the main regularities of the air flow 
behavior were established, and changes in the concentration of chemical pollution were shown 
depending on the presence of barriers with different heights and geometry, the position of the pollution 
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source and their amount, as well as on the geometry of the car. Further research is supposed to be 
carried out taking into account the terrain [18] and the joint use of barriers and other technical means 
(local suctions) to reduce the level of chemical pollution of the air near the road. 
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