SIMULATION OF CONTROL DRIVES IN A TOWER CRANE

Summary. The design of a control system for a tower crane is investigated. Underlying the controller design is the theory of optimal linear control. Computer models of a crane and the control systems for the crane drives are developed. Simulation data reveals that the motion of the load can be effectively controlled so that it should follow a predetermined trajectory.

1. INTRODUCTION

Dynamic processes tend to disturb crane operations, causing the sway of the load suspended on ropes, which negatively impacts on the accuracy of position control and work safety [12]. It is most desirable to eliminate the sway in the final phase of load motion. Such strategy is adopted by experienced crane operators, who carefully select the drives to be applied, though in order to entirely eliminate the load sway, it is required that a control system be incorporated in the crane structure.

Input shaping is a widely adopted control scheme for automatic elimination of swaying of the payload being handled [1, 8, 9, 15]. Real-time estimations of natural frequencies and damping ratios yield the input shaper implemented in the crane drives. The convolution of the main control signal and input shaper signals creates a command signal to control the crane. The method has been successfully applied not only in tower cranes, but in gantry cranes and in level lifting jib cranes. Another method of sway reduction works by implementing the pre-planned lifting path using a feedback controller based on a nonlinear kinematic and dynamic model of the crane, taking into account the drive constraints [2, 16]. The feedback controller requires the online measurements of displacements of the drives and of payload position within the crane’s working space. The payload position can be measured directly with laser sensors [10], though these are difficult to use at nights, in the rain and in dusty environments. The indirect method involves the measurements of hoisting rope position and two swing angles. Application of two transversely arranged rotary frames encompassing the hoisting rope and suspended under the trolley enables the measurement of the swing angles using encoders fitted to the frame axes. [7, 14]. The optimised trajectory connecting the start and end position of the payload can be derived, the typical optimisation criterion being the minimal handling
time. A major drawback, however, is that the initial conditions have to be first determined and real
time calculations of the entire trajectory are required, which becomes a cumbersome procedure [3],
[12, 14]. The design of the payload path has to take into account the presence of other objects and
structures on the construction site [6]. In order to precisely design the payload path it is required that
crane and drive flexibility should be taken into account [5]. Application of the dynamic model of the
crane taking into account the flexibility features vastly complicates the calculation procedure.
An important contribution to the study of vibration reduction methods is offered by experimental
programs carried out in laboratory conditions allowing the methods to be verified and improved at
relatively low costs [9, 11, 15]. This study utilises the crane control strategy aimed to generate
the optimised trajectory of the payload to be handled. Apart from the starting point and the initial
velocity, the parameters that are known include the end position of the payload, so the path can be
assumed in between and the velocity along the path can be found [13]. The mathematical expression of
the trajectory enables the calculation of the instantaneous payload acceleration. The inertia and gravity
forces acting upon the payload yield the resultant force tensioning the hoisting rope. The direction of
this force determines the instantaneous values of the distance between the jib and the trolley,
the angular position of the jib, the rope length and the swaying angles. These parameters need to be
known in order to fabricate the feedback controller.

2. INVERSE PROBLEM OF THE TOWER CRANE KINEMATICS

The inverse problem of kinematics involves finding the displacements of the crane drives and their
derivatives, as well as swaying angles for the pre-planned velocity along the payload travel path.
Full implementation of the drive control should take into account those factors that have a major
bearing on the travel path:

a) jib rotation drive, trolley travel drive, rope winding drive,
b) deformations of the tower, jib and hoisting rope under the applied loading,
c) drive flexibility, considering the mass of hoisting rope and the rope hoisting,
d) wind.

In the first stage the crane model is developed that takes into account the aspect (a) only. Results
will be utilised as baseline data for further research work on an extended model of the crane, taking
into account the other listed factors. In the context of the assumption that the hoisting rope should be
weightless, inextensible and flabby, the hoisting rope will always have the direction of the tensioning
force, being the resultant of the forces acting upon the payload’s centre of gravity (further referred to
just as the payload), as shown in Fig. 1:

\[F_p \cdot f^o = m_p (g - a_p) \] \hspace{1cm} (1)

where:

- \(m_p \) - payload mass,
- \(a_p \) - vector of payload’s acceleration;
- \(g \) - vector of gravity’s acceleration.

Eq (1) yields the value of the tensioning force:

\[F_p = m_p \| g - a_p \| \] \hspace{1cm} (2)

and the versor of the tensioning force direction:

\[f^o = \frac{g - a_p}{\| g - a_p \|} \] \hspace{1cm} (3)

The trajectory is obtained by finding the radius vector of the payload associated with \(s \) - payload
displacement along the travel path: \(r_p = [x_p(s), y_p(s), z_p(s)] \), for the given velocity pattern of
the payload motion along this path:
Simulation of control drives in a tower crane

\[
\frac{ds}{dt} = \dot{s} = v_p(s)
\]

where: \(v_p(s) > 0\), \(v_p(0) = 0\), \(v_p(S) = 0\), \(S\) - length of the travel path.

\(\frac{ds}{dt} = \dot{s} = v_p(s)\)

\(\frac{dv_p}{ds} = \tau^o\)

\(\frac{d^2r_p}{ds^2} = k\)

\(\frac{d^2r_p}{ds^2} = n^o\)

\(x, y, z = 0\) - trolley coordinates in the plane described by the jib,

\(x^o, y^o, z^o\) - versors of the axis in the immobile reference system.

The equation of the radius vector of the straight line along which the hoisting rope is stretched is given as:

\[r_r = x_r x^o + y_r y^o + z_r z^o \]
\[r = r_p + f^o f \]
(8)

where: \(f \in \mathbb{R} \) - parameter expressed in the unit of length.

The trace of a line along which the hoisting rope stretches itself on the plane described the jib determines the trolley position. Solving the system of equations (7) and (8) in terms of: \(x_t, y_t \) and \(f \) yields:

\[r_j = r \rightarrow x_t x^o + y_t y^o = r_p + f^o f \]
(9)

Projecting the vectors given in Eq (9) onto the directions of versors in the immobile reference system yields:

\[x_t = (r_p + f^o f) \cdot x^o, \quad y_t = (r_p + f^o f) \cdot y^o, \quad f = -\frac{r_p \cdot z^o}{f^o \cdot z^o} \]
(10)

\[\text{Fig. 2. Swing angles and loading of the crane drives} \]

Rys. 2. Kąty wychylenia liny z ładunkiem od pionu i obciążenia napędów żurawia wieżowego

The instantaneous hoisting rope length becomes:

\[l_r = |f| \]
(11)

The distance between the trolley and the tower mast axis is expressed as:

\[r_t = \| x_t x^o + y_t y^o \| \]
(12)

The angle of jib rotation becomes:

\[\theta_j = \text{sign}(y_t) \arccos(r_t^o \cdot x^o) \]
(13)

where: \(r_t^o = \frac{r_t}{r_t} \) - versor in the direction of the jib.

Swing angles:

\[\varphi_r = \arcsin \left(\frac{(r_p - r_t) \cdot r_t^o}{l_r} \right), \quad \psi_r = -\arctan \left(\frac{r_p \cdot (r_t^o \times z^o)}{r_p \cdot z^o} \right) \]
(14)
Finding \(\theta_j, r_t, l_r, \varphi_r, \psi_r \) in the explicit form (see Fig. 2) completes the inverse problem of kinematics of the tower crane in terms of displacement and their respective derivatives can be now calculated.

3. INVERSE PROBLEM OF THE TOWER CRANE DYNAMICS

The inverse problem of dynamics consists in finding the drives loading in the tower crane, which appears when the pre-planned trajectory is to be realised. The force generated on the drum of the winding installation is derived from formula (2). The rope tensioning force that holds the trolley in position, the trolley being treated as a particle, is expressed as:

\[
F_t = (F_p \cdot r_i^o - m_t r - m_t r_i^0) r_i^o
\]

where: \(m_t \) - mass of the trolley.

Torque transmitted by the jib swing becomes:

\[
M_j = [(r_i^o \times F_p) \cdot z^o - J_{j,\theta_j} - 2m_t r_i^0 \cdot \theta_j] \cdot z^o
\]

where:

\(J_{j,\theta_j} \) - mass moment of jib’s inertia computed round the vertical axis in the immobile coordinate system.

4. CONTROL SYSTEM

Underlying the synthesis of the control system (Fig. 3.) are the following assumptions: crane elements are taken as rigid, ropes are taken as rigid and weightless, the load is treated as a particle, the motion of a load suspended on ropes is treated as that of a spherical pendulum, no friction, the drives execute the required torque in an ideal manner.

Basing on the pre-planned travel path \(r_p(s) \) and the assumed velocity pattern \(v_p(s) \), the Inverse Kinematics block yields the predicted values of configuration coordinates \(q_o = [\theta_{jo}(t), r_{jo}(t), l_{jo}(t), \varphi_{ro}(t), \psi_{ro}(t)]^T \), used as inputs to the Inverse Dynamics block and compared with the measured parameters \(q = [\theta_j(t), r_j(t), l_r(t), \varphi_r(t), \psi_r(t)]^T \). Comparison of predicted and measured coordinates enables us to find the deviation \(q_o = [\theta_{jo}(t), r_{jo}(t), l_{jo}(t), \varphi_{ro}(t), \psi_{ro}(t)]^T \), used as an input to the Controller block. The main function of a controller is to find the corrections \(u_o = [M_{jo}(t), F_{jo}(t), F_{jo}(t)]^T \) of the driving torque and forces. These correction terms are added to the
initial drive-induced excitations \(u_e = [M_e(t), F_e(t), F_{pe}(t)]^T \), computed in the Inverse dynamics block, yielding the values of excitations \(u = [M_f(t), F_f(t), F_p(t)]^T \) to be implemented at the given instant by the drives, in accordance with the formula:

\[
\mathbf{u} = \mathbf{u}_e + \mathbf{u}_o
\]

where:

\(\mathbf{u}_o \) - matrix of generalised forces.

The system of equations (18) might be rewritten as a matrix equation [4]:

\[
\mathbf{f}(q, \dot{q}, \ddot{q}) = \mathbf{M}(q)\dot{q} + \mathbf{c}(q, \dot{q}) + \mathbf{g}(q) = \mathbf{u}^* \]

(19)

where:

\(\mathbf{M}_{5 \times 5} \) - mass matrix,

\(\mathbf{c}_{5 \times 1} \) - Euler and Coriolis force matrix,

\(\mathbf{g}_{5 \times 1} \) - matrix of gravity forces.

Deviations of configuration coordinates and their derivatives with respect to time can be compiled to form the state matrix \(\mathbf{z} = [\mathbf{q}_e^T, \mathbf{q}_o^T]^T \), thus contributing to the equation of state.

\[
\mathbf{z} = \mathbf{A}\mathbf{z} + \mathbf{B}u_o, \quad \mathbf{z}(t_o) = \mathbf{z}_o
\]

(20)

where:

\[
\mathbf{A}_{10 \times 10} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}_e^{-1}\mathbf{K}_e & -\mathbf{M}_e^{-1}\mathbf{D}_e \end{bmatrix} \quad \text{- matrix of state,}
\]

\[
\mathbf{B}_{10 \times 5} \quad \text{- control matrix.}
\]

Time - variant matrices \(\mathbf{M}_e, \mathbf{K}_e, \mathbf{D}_e \) present in the matrix \(\mathbf{A} \) are obtained by linearisation of Eq (19) in the neighbourhood of the expected values of \(q_e \):

\[
\mathbf{M}_e = \mathbf{M}(q_e), \quad \mathbf{K}_e = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{q}} \right|_{q=q_e}, \quad \mathbf{D}_e = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{q}} \right|_{q=q_e}
\]

(21)

The quality criterion being taken as:

\[
J = \lim_{T \to \infty} \int_0^T (\mathbf{z}^T \mathbf{Qz} + \mathbf{u}^T \mathbf{Iu})dt
\]

(22)

Let us recall the Riccatti equation for steady states:

\[
\mathbf{H}\mathbf{A} + \mathbf{A}^T\mathbf{H} - \mathbf{H}\mathbf{B}\mathbf{I}\mathbf{B}^T\mathbf{H} + \mathbf{Q} = \mathbf{0}
\]

(23)

where: \(\mathbf{Q}_{10 \times 10} \) - diagonal matrix of weights.

The solution to Eq (23) is a symmetrical matrix \(\mathbf{H}_{10 \times 10} \), present in the feedback matrix \(\mathbf{K}_{3 \times 10} \), optimal in terms of the assumed criteria of the controller:

\[
\mathbf{u}_o = -\mathbf{B}^T\mathbf{Hz} = -\mathbf{Kz}
\]

(24)

5. CONTROL SYSTEM PERFORMANCE

Application of the Visual Nastran 4D software yields a computational model (procedure) enabling us to preset the computed torque and forces in the drives \(\mathbf{u} \), allowing the ‘measurement’ of all
components of generalised coordinates q. The Trajectory Planning, Inverse Kinematics, Inverse Dynamics and Controller blocks are implemented in Simulink environment. Both programs enable the dynamic data interchange, required to create a full simulation model of optimal control of the tower crane, shown in Fig. 3.

Simulations of optimal control of crane’s drives assume a linear trajectory of the load motion, from the point P_s (29.00, 9.09, -20.00) [m] to the point P_f (11.00, 15.00, -8.00) [m]; path length $S = 25.83$ [m]. The designed load displacement along its trajectory (Fig. 4) is governed by a polynomial function, assuming the velocity, acceleration and jerk at points P_s and P_f to be zero. The maximal load velocity is associated with the assumed time of the movement $T = 30$ [s]. The load mass: $m_p = 1000$ [kg], mass of the trolley: $m_t = 50$ [kg], the mass moment of inertia of the jib and the counterweight: $J_{jz} = 11617537$ [kgm2]. The applied matrix weights are: $Q_{diag} = [0.05, 0.0, 0.06, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.1]$. Figs 4-6 show the plots of major simulation data. The load reached the final point with the coordinates P_f^* (10.85, 14.82, -8.09) [m], the path length approached $S^* = 26.31$ [m], load velocity at the final point is 0.08 [ms$^{-1}$].

\[\text{Fig. 4. Displacement and its derivatives: predicted (e-indexed) and implemented; a) displacement, b) velocity, c) acceleration}\]

\[\text{Rys. 4. Przemieszczenie i jego pochodne: przewidywane (indeks - c) i zrealizowane; a) przemieszczenie, b) prędkość, c) przyspieszenie}\]
6. CONCLUSIONS

Simulations performed under the given assumptions confirmed the improved performance of the drive control system. The discrepancies between the pre-planned and actual trajectory are attributable to the fact that two different computer programs (Simulink, Visual Nastran 4D) were used to develop crane models used in the simulations. In order that the swing suppression system can be developed through generating the optimised trajectory, it is required that the crane model should be extended to approximate its real working conditions. The next crane model should take into account the deformations of the crane structure, rigidity and drive constraints.

The method of payload swing suppression through the synthesis of its trajectory is a practical and effective scheme in automated freight handling, where the coordinates of the end points can be
precisely determined, otherwise the method can be applied only in the systems supporting the crane operation. The end point of the payload travel path may be difficult to define because of poor visibility in the area. The operator cab is at such distance that the precise position of the payload cannot be reliably established. The desired end point of the trajectory can be also obscured by other buildings or structures, or by the payload itself. In such cases the operator needs the support of workmen stationed near the end point and equipped with the specialised devices for measuring the initial coordinates of the end point. Further corrections of the payload position are downloaded at the instant the payload approaches the workman who is to control its position. After each correction, the updated trajectory has to be calculated in real time and calculation data should be utilised for further correction of the payload position to be implemented by the crane drives.

Fig. 6. Configuration coordinates: predicted (e-indexed) and implemented: a) jib rotation angle, b) distance between the trolley and the axis of rotation, c) rope length
Rys. 6. Współrzędne konfiguracyjne: przewidywane (indeks - e) i zrealizowane: a) kąt obrotu wysięgnika, b) odległość wózka od osi obrotu wysięgnika, c) długość liny
References

Received 29.05.2010; accepted in revised form 17.10.2011