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ROUTE PLANNING IN DYNAMIC GRAPHS WITH LINEAR CHANGING 
AND PREPROCESSING FOR SPEED-UP 

 
Summary. The goal of this paper is to work out a concept for route planning in a road 

network, where the costs of roads are not constant, but changing in a linear way. The 
solution developed is based on the classical Dijkstra's algorithm, which helps to find the 
route with minimal cost. The new algorithm takes the varying into account in order to 
find out the best route. This search refers not only to a moment of the departure but to the 
whole duration of the travel. A speed-up technique has been developed for preprocessing 
before run time. This preprocessing phase helps to give back the route with minimal cost 
for the user quickly in run time query. A numerical example has been presented to show 
the detailed steps of the algorithm and the speed-up technique. 

 
 
 

PLANOWANIE PODRÓŻY W DYNAMICZNYCH GRAFACH 
Z UWZGLĘDNIENIEM WSTĘPNIE PRZETWORZONEGO 
I ZMIENIAJĄCEGO SIĘ LINIOWO PRZYSPIESZENIA 

 
Streszczenie. Celem artykułu jest wypracowanie koncepcji planowania tras 

(trasowania) w sieci drogowej, w której koszty połączeń nie są stałe, lecz zmieniają się w 
sposób liniowy. Zastosowane rozwiązanie opiera się na klasycznym algorytmie Dijkstra, 
który umożliwia znajdowanie tras po koszcie minimalnym. Proponowany algorytm 
uwzględnia dynamiczną różnorodność tras, w celu generowania najkorzystniejszej trasy. 
Jej poszukiwanie uwzględnia nie tylko momenty rozpoczęcia podróży, ale także czas 
trwania całej podróży. Technikę przyspieszania (speed-up) rozwinięto, w celu wstępnego 
przetwarzania przed fazą wykonania. Faza wstępnego przetwarzania pozwala szybciej 
pozyskać trasę, po koszcie minimalnym dla użytkownika. W artykule zostały 
zaprezentowane  liczne  przykłady,  w  których  przedstawiono  kolejne  kroki algorytmu 
i techniki przyspieszania. 

 
1. INTRODUCTION 

 
A dynamic graph algorithm maintains a given property on a graph subject to dynamic changes, 

such as edge insertions, edge deletions and edge weight updates. A dynamic graph algorithm should 
process queries on this property quickly, and perform update operations faster than recomputing from 
scratch, as carried out by the fastest static algorithm. An algorithm is fully dynamic if it can handle 
both edge insertions and edge deletions. A partially dynamic algorithm can handle either edge 
insertions or edge deletions, but not both: we say that it is incremental if it supports insertions only, 
and decremental if it supports deletions only.  
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This paper deals with only weight updates, because our focus is transport area, and in the graph, as 
representation of road network, there is no sense of the edge insertions and deletions. In the road 
network the cancelling of the roads and construction of new roads are rare, otherwise these kinds of 
changes do not occur during the travel time of an individual vehicle, so there is no need to insert and 
delete. 

 
 

2. GRAPHS WITH LINEAR CHANGING COSTS 
 

In this paper the investigated graphs are special dynamic graphs: the costs of the edges change 
linear way (and there are no edge insertions or edge deletions). The goal of the investigation is to find 
the path with minimal cost. There are some solutions for this at the fully dynamic graphs (Cicerone et. 
al. 2003, Frigioni et. al. 2003). One of them is based on A* algorithm (Likhachev et. al. 2008), other 
works deal with shortest path for all node pairs (Demetrescu and Italiano 2006a, 2006b). But these 
solutions exploit all types of changes (insertions, deletions and weight updates), so in our case are not 
applicable because of considering only weight updates.  

We define graph with linear changing costs by the following way: A graph is given with an 
ordered pair G: = (V, E) comprising a set V of vertices or nodes together with a set E of edges (roads), 
which connect two nodes. Besides the cost of each edge (from node i to j) is given by a function: c(i, j) 
= max (a•t+b, cmin), where t is time, a, b Є R and -1 < a < 1, furthermore cmin is the minimal cost (the 
cost should not decrease below this value). The cmin plays the roll at case of only decreasing cost 
function, where a is negative. There is a restriction for all cost function, that the value at zero time 
(and any time) should be equal or greater than zero.  

In the rest of the paper we call the graph with linear changing costs briefly as dynamic graph. The 
defined graph may be directed or undirected, the undirected one can be traced back to such directed 
one, where each edge is replaced into 2 edges with opposite directions. Hereafter we deal with only 
directed graph. 

 
 

3. EXTENDED DIJKSTRA ALGORITHM FOR DYNAMIC GRAPH  
 

3.1. Algorithm for Graph with Linear Changing Cost 
 
At route planning the task is to reach a node (end node) from another node (start node) in the graph 

at smallest cost. Using the original Dijkstra algorithm (Dijkstra 1959) we can construct an extended 
procedure for graphs with linear changing costs, which differs from algorithms developed in the 
literature (Cicerone et. al. 2003, Frigioni et. al. 2003, Demetrescu and Italiano 2006a, 2006b) because 
of different graph types.  

At the extended Dijkstra algorithm the graph and the start node are given, and the algorithm will 
calculate the smallest costs for every other node and will give that neighbor node (see ‘previous’ at 
the pseudo-code of the algorithm), via which the investigated node can be accessed as the smallest 
cost path. 

Thus at end node we can get the smallest cost, furthermore we can go back node by node via 
‘previous’ nodes: this will be the smallest cost path. Let us denote the time, when the search begin at 
the start node by t0 and the cost to end node by s(v|t0) provided the search has began at the start node at 
t0.  

The cost between two neighbor nodes is c(u, v | te), where te is the starting time from node u (this is 
equal to the arrival time via the previous edge to node u, because the waiting at nodes is not allowed). 
The detailed steps of the algorithm can be seen at the next pseudo-code. 

 
 

1.   function extended_alg(graph,start,t0): 
2.   do for every v node //begin  
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3.   s(v|t0) := infinite 
4.   previous (v) := not defined //end 
5.   s(start) := 0                      
6.   Q := all node  
7.   while Q not empty //BEGIN 
8.   u := node with smallest cost in Q  
9.   remove u from Q  
10. for every v neighbor of u: //begin 
11. q = s(u|t0) + c(u,v|te=s(u|t0)) 
12. if q < s(v|t0)               
13. s(v|t0) := q 
14. previous (v) := u //end,END 
15. return previous () 

 
The algorithm terminates after investigation of all nodes and guarantees the finding of smallest cost 

if there were no negative cost edges. 
In general the cost may be every type of costs, but in our application area the cost is the time, 

because in the transport the most important is the smallest travel time.  
In this survey the assumptions and declarations of the model are the following: 

1. The costs are varying by linear way. 
2. The travel time is considered as the cost. 

 
Costs are changing during the crossing via the edges of the graph with changing cost. Because of 

assumption 2 the final cost (travel time) is different from the predefined one (travel time influences on 
oneself). Final cost of an edge should be investigated and determined. Let us denote the departure time 
at a node of the examined edge by te. Let us denote the unknown arrival time at the other node of the 
edge after the crossing through the examined edge by tx. Finally let us denote the transfer time of the 
crossing by tT. The cost is the function of the time: c(u, v | te). According to assumption 2 the transfer 
time is equal to time average of the varying cost. 
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In order to express the tT, we should calculate the result of the integration. If the tT does not reach 
the minimal cost (cmin), then the change is simple linear. The integration of the linear function can be 
calculated.  
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Based on this and previous equation a new equation can be written: 
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As can be seen from this equation the parameter a should be less, than 2, otherwise the transfer 
time (tT) will be infinite. If the parameter a is positive, then the transfer time is greater than the 
intercept parameter b. If a is negative, then the transfer time is less than parameter b; at case of zero 
the transfer time is equal to the constant parameter b.  

When the tT reaches the minimal cost, the transfer time will remain the same: cmin. Based on these 
the unknown arrival time can be written: 
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3.2. Example for the Algorithm  

 
Fig. 1 shows an example for graph with linear changing cost, where the cost functions are given by 

[a;b] form.  
 

 
 

Fig. 1. An example for graph with linear changing cost 
Rys. 1. Przykład grafu liniowej zmiany kosztów 

 
Let us follow the extended Dijkstra algorithm step by step from node A starting at t0=0. The aim is 

the node D, but the extended procedure will calculate the smallest costs for all node. The cmin=2 for all 
edges are given, but it can play a role only at edge between B and D, because this is the only one, 
where the cost is decreasing.  Let us denote the calculated smallest cost of the whole path from start 
node to a node u by s(u). This is the abbreviated notation of s(u | t0=0).  

 
1. step. Explication of start node, i.e. node A: 

 
s(A) = 0 
c(A, B | te=0) = 5.26316  
c(A, C | te=0) = 2.66667 
s(B) = s(A)+ c(A, B | te=0)  = 5.26316 
s(C) = s(A)+ c(A, C | te=0)  = 2.66667 
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The next possible nodes for explication are the node B and node C, and node C has the smallest 
cost, so in the next step this node will be explicated. 

 
2. step. Explication of node C: 

 
c(C, D | te=2.66667) = 9.48148  
c(C, B | te=2.66667) = 3.43860 
s(D) = s(C)+ c(C, D | te=2.66667)  = 12.14815 
 

Furthermore we should examine, that the earlier s(B) value or new value is smaller: 
 
s(B) ? s(C)+ c(C, B | te=2.66667)  = 6.10527 
 

The earlier s(B) value: 5.26316 is less than 6.10527, so the s(B) will remain the same. The 
unexplicated node with smallest cost is the node B. 

 
3. step. Explication of node B: 

 
c(B, D | te=5.26316) = 4.49761  
4.49761 is greater, than cmin, so this will be the same. 
s(D) ? s(B)+ c(B, D | te=5.26316)  = 9.76077 
 

The earlier s(D) value: 12.14815 is greater than the new one, so the s(D) will be equal to 9.76077. 
There are no unexplicated nodes, so the procedure terminates. The smallest cost is 9.76077, and 
corresponding path is A-B-D. 

 
 

4. SPEED-UP TECHNIQUE 
 

4.1. Speed-up Techniques for Static Graph 
 

Although the standard algorithm is fast for finding the smallest cost path in the theory, the 
corresponding algorithms are often not fast enough for applications in the real networks that require a 
huge number of the shortest path computations. A speed-up technique is needed, and therefore some 
algorithms like bidirectional Dijkstra, A* algorithm (Goldberg & Harrelson 2005, Hart et. al. 1968), 
Arc-Flags, Highway Hierarchies, Reach-based and other algorithms (Goldberg & Werneck 2005, 
Delling & Wagner 2007) have been developed to solve this problem. The speed-up techniques use 
preprocessing phase (Lauther 1997, 2004) with some calculations to take the route search in real time 
more quickly.  

The most simple speed-up technique of the search is the bidirectional Dijkstra algorithm. In this 
procedure, an additional search is started from the target node and the query stops as soon as both 
searches meet. Applying this approach, the paths of forward and backward search are alternated. This 
bidirectional Dijkstra algorithm can not be used in the dynamic graph defined in this paper, because 
we do not know the arrival time at aim node. 

The other important technique is the Highway Hierarchies (Sanders & Schultes 2005, 2006), which 
uses the concept of local search. This approach is a purely hierarchical method, i.e. an approach trying 
to exploit the hierarchy of a graph. Therefore, the network is contracted and then ‘important’ edges 
(the so called highway edges) are identified. By rerunning those two steps, a natural hierarchy of the 
network is obtained. The contraction phase builds the core of a level and adds shortcuts to the graph. 
The identification of highway edges is done by local Dijkstra executions.  

A known speed-up technique of the search is the Arc-Flags (Möhring et. al. 2005, Köhler et. al. 
2006) method, which is a modified Dijkstra algorithm in order to avoid exploring unnecessary paths. 
This means the procedure checks the flag entry of the corresponding target region (the region where 
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the target node t belongs to) every time before the Dijkstra algorithm wants to traverse an arc. This is 
the only modification to the standard Dijsktra algorithm. More precisely, the Arc-Flag approach 
partitions the graph into cells and attaches a label to each edge. A label contains a flag for each cell 
indicating whether the shortest path to the corresponding cell exists that starts with this edge. As a 
result, Arc-Flag Dijkstra often only visits those edges which lie on the shortest path of a long-range 
query. 

There is another speed-up technique, Reach-based (Gutman 2004), whose essentials, that the edges 
have got scores at the preprocessing phase. These scores depend from the location of a long path. 
Close to two endpoints (the problem is symmetric for the start node and aim node) the scores are low, 
in the middle of the long path the score are high. In the real-time search the algorithm takes into these 
scores account. The middle of a long path belongs to global problem (this is a common part of many 
paths), this is the reason of high scores. The dynamic graph is not symmetric from view of the start 
node and aim node, therefore this speed-up technique (as the previous ones) is not applicable in our 
case.  

 
4.2. Speed-up Technique for Dynamic Graph 

 
Our dynamic graph contains the influencing of the time, therefore the speed-up techniques 

described above can not be used. In our solution we use a long preprocessing before user asks. In this 
preprocessing phase the speed-up algorithm calculates the minimal costs for every end node at any 
time. After this parametric calculation the user can give the starting time, desired end node; the 
procedure will give back the minimal cost and the corresponding path at once by substation of the 
parameters. The next example will show the parametric calculations of the speed-up algorithm. 

 
4.3. Example for Speed-up Technique  

 
First of all the algorithm examines the decreasing cost parameters. The example graph with costs is 

the same, as in the previous session, so only one edge has been investigated: the edge between B and 
D. The algorithm searches a moment (breakpoint), when the linear cost switches over to fix. At time 
tm, the c(B, D | te) reaches the minimum, so based on the following equations the corresponding tm 
value can be calculated.  
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At later calculations it can be seen, that this time interval is the smallest value to the node B. 
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From this equation the tm can be calculated: tm = 12.42839. 
At edge of node B and D before starting time 12.42839 (at start node) the decrease linear cost 

function is valid, after that time the cost function will be constant. In the following the detailed steps 
of the preprocessing can be seen. 

 
1. step. Explication of node A 
 

Let us denote the departure time at node A by tZ (tZ≥0). Furthermore let us denote the calculated 
smallest cost of the whole path from start node to a node u by s(u) as the abbreviation of s(u | tZ).  
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s(B) = c(A, B | te=tZ)  ?   s(C) = c(A, C | te=tZ) 
 
(0.1·tZ + 5) · 0.75       ?   (0.5·tZ + 2) · 0.95 
 
1.85                            ?    0.4·tZ 
 
if tZ < 4.625, then c(A, C | te=tZ) is smaller. In this point the algorithm bifurcates into two threads. 

In the next step the node C will be explicated if tZ < 4.625, otherwise the node B will be explicated. 
 

2. step. Explication of node C if tZ < 4.625: 
 
The node B and node D should be explicated in this step. The departure time at node A is tZ, the 

arrival time at node C is s(C) + tZ.  
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Furthermore we should examine, that the earlier s(B) value or new value is smaller: 
 
s(B)  ?    s(C)+ c(C, B | te)   
 

10526.6 0.84211    ?26316.50.10526 +⋅+⋅ ZZ tt  
 
if -1.14284 < tZ then s(B) is smaller. This is always true, because tZ is equal or greater than zero. 
 

3. step. Explication of node B if tZ < 4.625: 
 
Only the node D should be explicated in this step. The departure time at node A is tZ, the arrival 

time at node B is s(B) + tZ.  







 −
−

+





 +⋅

+⋅−
=

+⋅
+=

2
2.01

6
95.0

51.02.0
 )

95.0
51.0 t| D c(B, e

Z
Z

Z
Z

tt
tt                       (16) 

=
+⋅

+=+  )
95.0

51.0 t| D c(B,s(B) e
Z

Z
tt                                           (17) 



56                                                                                                                                                  G. Szűcs 
 

=
+






 +⋅

+⋅−
+

+⋅
=

1.1

6
95.0

51.02.0

95.0
51.0 

Z
Z

Z

tt
t

  -0.09569 tZ + 9.76077              (18) 

We should compare this to cost of route to node D: s(D) = 1.03704 tZ + 12.14815. If tZ > -2,10763, 
then new route is smaller. This will be always true because of zero or positive tZ.  

 
2. step. Explication of node B if 12.14815 > tZ ≥ 4.625: 

 
Only the node D should be explicated in this step.   
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3. step. Explication of node C if 12.14815 > tZ ≥ 4.625: 

 
The node B and node D should be explicated in this step. The cost of the old route to the node B is 

(based on the step 1.): s(B) = 0.10526 tZ + 5.26316. We should compare this to cost of new route A-C-
B.  
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if -1.14284 < tZ then s(B) is smaller. This is always true, because tZ is equal or greater than zero. 
We should examine the node D as well. The cost of the old route to the node D: s(D) = -0.09569 tZ + 
9.76077. We should compare this to cost of new route A-C-D.  
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if tZ > -2,10763, then old route is smaller. This will be always true because of zero or positive tZ. 
 

2. step. Explication of node B if tZ ≥ 12.42839: 
 
Only the node D should be explicated in this step.  
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where 2 ) t| D c(B, e =  
s(D) = 0.10526 tZ + 7.26316                                                  (23) 

(With tZ = 12.42839 we can take a simple check, where s(D) is equal to 8.5714 by both 
calculations.) 

 
3. step. Explication of node C if tZ ≥ 12.42839: 

 
The node B and node D should be explicated in this step. The cost of the old route to the node B is: 

s(B) = 0.10526 tZ + 5.26316. We should compare this to cost of new route A-C-B.    
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if -1.14284 < tZ then s(B) is smaller. This is always true, because tZ is equal or greater than zero. 

We should examine the node D as well. The cost of the old route to the node D: s(D) = 0.10526 tZ + 
7.26316. We should compare this to cost of new route A-C-D.  
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if tZ > -5,24264, then old route is smaller. This will be always true because of zero or positive tZ. 
 

Final numerical result 
 
The best route from node A to D at any time is A-C-D. The minimal cost of this route is equal to -

0.09569 tZ + 9.76077 if the starting time tZ < 12.42839; otherwise is equal to 0.10526 tZ + 7.26316. 
Based on these preprocessing calculations the best route and the corresponding cost can be given back 
quickly.  

 
 

5. CONCLUSIONS 
 
The route planning is important in many area of the transport: logistics (Kiisler 2008), urban traffic 

(Matis 2008), city transport (Daunoras et. al. 2008). In this paper a solution has been worked out for 
route planning in a road network, where the costs of roads are changing in linear way. The algorithm 
developed is based on the classical Dijkstra's algorithm, which helps to find the route with minimal 
cost.  

The new algorithm works on dynamic graph and it takes the varying into account in order to find 
out the best route. This search refers not only to a moment of the departure but to the whole duration 
of the travel, in the future as well. A speed-up technique has been developed for preprocessing of the 
calculations before run time. This preprocessing phase helps to give back the route with minimal cost 
for the user quickly in run time query. This concept helps in route planning and extends the 
information with trends in the future. This is useful for such traffic, which can be forecasted in linear 
way.  
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